Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(10): 1209-1214
DOI: 10.1055/s-0037-1611793
DOI: 10.1055/s-0037-1611793
cluster
1,10-Phenanthroline- or Electron-Promoted Cyanation of Aryl Iodides
Authors
This work was supported in part by JSPS KAKENHI Grant Numbers JP16K05695, JP16K05777, JP16H01155, and JP18H04415 in Middle Molecular Strategy.
Further Information
Publication History
Received: 05 February 2019
Accepted after revision: 24 March 2019
Publication Date:
11 April 2019 (online)


Published as part of the Cluster Electrochemical Synthesis and Catalysis
Abstract
A 1,10-phenanthroline-promoted cyanation of aryl iodides has been developed. 1,10-Phenanthroline worked as an organocatalyst for the reaction of aryl iodides with tetraalkylammonium cyanide to afford aryl cyanides. A similar reaction occurred through an electroreductive process.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611793.
- Supporting Information (PDF)
-
References and Notes
- 1a Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substances: Syntheses Patents, Applications, 4th ed. Thieme; Stuttgart: 2001
- 1b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; Weinheim: 1989: 819
- 1c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 2a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
- 2b Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
- 2c Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1492
- 2d Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1496
- 2e Mo F, Qiu D, Zhang Y, Wang J. Acc. Chem. Res. 2018; 51: 496
- 3a Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. 1919; 52: 1749
- 3b Koelsch CF, Whitney AG. J. Org. Chem. 1941; 6: 795
- 3c von Braun J, Manz G. Liebigs Ann. Chem. 1931; 488: 111
- 3d Connor JA, Leeming SW, Price R. J. Chem. Soc., Perkin Trans. 1 1990; 1127
- 3e Callen JE, Dornfeld CA, Coleman GH. Org. Synth. 1948; 28: 34
- 3f Wu JX, Beck B, Ren RX. Tetrahedron Lett. 2002; 43: 387
- 4a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
- 4b Sundermeier M, Zapf A, Beller M. Eur. J. Inorg. Chem. 2003; 3513
- 4c Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068
- 4d Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
- 4e Wang T, Jiao N. Acc. Chem. Res. 2014; 47: 1137
- 4f Ping Y, Ding Q, Peng Y. ACS Catal. 2016; 6: 5989
- 5a Zhang S, Neumann H, Beller M. Chem. Eur. J. 2018; 24: 67
- 5b Xia A, Xie X, Chen H, Zhao J, Zhang C, Liu Y. Org. Lett. 2018; 20: 7735
- 5c Makaravage KJ, Shao X, Brooks AF, Yang L, Sanford MS, Scott PJ. H. Org. Lett. 2018; 20: 1530
- 5d Gan Y, Wang G, Xie X, Liu Y. J. Org. Chem. 2018; 83: 14036
- 5e Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118
- 5f Kristensen SK, Eikeland EZ, Taarning E, Lindhardt AT, Skrydstrup T. Chem. Sci. 2017; 8: 8094
- 5g Kim K, Hong SH. Adv. Synth. Catal. 2017; 359: 2345
- 5h Coombs JR, Fraunhoffer KJ, Simmons EM, Stevens JM, Wisniewski SR, Yu M. J. Org. Chem. 2017; 82: 7040
- 5i Bag S, Jayarajan R, Dutta U, Chowdhury R, Mondal R, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 12538
- 5j Škoch K, Císařová I, Štěpnička P. Organometallics 2015; 34: 1942
- 5k Sharif M, Wu X.-F. RSC Adv. 2015; 5: 21001
- 5l Nasrollahzadeh M, Jaleh B, Fakhri P, Zahraei A, Ghadery E. RSC Adv. 2015; 5: 2785
- 5m Mishra NK, Jeong T, Sharma S, Shin Y, Han S, Park J, Oh JS, Kwak JH, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 1293
- 5n Cohen DT, Buchwald SL. Org. Lett. 2015; 17: 202
- 5o Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
- 6a Zheng S, Yu C, Shen Z. Org. Lett. 2012; 14: 3644
- 6b Shu Z, Ji W, Wang X, Zhou Y, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 2186
- 6c Dong J, Wu Z, Liu Z, Liu P, Sun P. J. Org. Chem. 2015; 80: 12588
- 6d Mishra NK, Jeong T, Sharma S, Shin Y, Han S, Park J, Oh JS, Kwak JH, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 1293
- 6e Okamoto K, Sakata N, Ohe K. Org. Lett. 2015; 17: 4670
- 6f Pawar AB, Chang S. Org. Lett. 2015; 17: 660
- 6g Zhao M, Zhang W, Shen Z. J. Org. Chem. 2015; 80: 8868
- 6h Zhu Y, Li L, Shen Z. Chem. Eur. J. 2015; 21: 13246
- 6i Zhu Y, Zhao M, Lu W, Li L, Shen Z. Org. Lett. 2015; 17: 2602
- 6j Liu W, Richter SC, Mei R, Feldt M, Ackermann L. Chem. Eur. J. 2016; 22: 17958
- 6k Takise R, Itami K, Yamaguchi J. Org. Lett. 2016; 18: 4428
- 6l Ogiwara Y, Morishita H, Sasaki M, Imai H, Sakai N. Chem. Lett. 2017; 46: 1736
- 6m Yan Y, Sun S, Cheng J. J. Org. Chem. 2017; 82: 12888
- 6n Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693
- 6o Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y. Org. Lett. 2018; 20: 4994
- 6p Shirsath SR, Shinde GH, Shaikh AC, Muthukrishnan M. J. Org. Chem. 2018; 83: 12305
- 6q Yu X, Tang J, Jin X, Yamamoto Y, Bao M. Asian J. Org. Chem. 2018; 7: 550
- 6r Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci. 2019; 10: 994
- 7a Dohi T, Morimoto K, Kiyono Y, Tohma H, Kita Y. Org. Lett. 2005; 7: 537
- 7b Dohi T, Morimoto K, Takenaga N, Goto A, Maruyama A, Kiyono Y, Tohma H, Kita Y. J. Org. Chem. 2007; 72: 109
- 7c Yang Y, Zhang Y, Wang J. Org. Lett. 2011; 13: 5608
- 7d McManus J, Nicewicz D. J. Am. Chem. Soc. 2017; 139: 2880
- 8a Petrillo G, Novi M, Garbarino G, Dell’erba C. Tetrahedron 1987; 43: 4625
- 8b Novi M, Garbarino G, Petrillo G, Dell’erba C. Tetrahedron 1990; 46: 2205
- 9a Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
- 9b Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
- 9c Shirakawa E, Itoh K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
- 9d Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
- 9e Qiu Y, Liu Y, Yang K, Hong W, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett. 2011; 13: 3556
- 9f Budén ME, Guastavino JF, Rossi RA. Org. Lett. 2013; 15: 1174
- 9g Dewanji A, Murarka S, Curran DP, Studer A. Org. Lett. 2013; 15: 6102
- 9h Leifert D, Daniliuc CG, Studer A. Org. Lett. 2013; 15: 6286
- 9i Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
- 9j Song Q, Zhang D, Zhu Q, Xu Y. Org. Lett. 2014; 16: 5272
- 9k Studer A, Curran DP. Nat. Chem. 2014; 6: 765
- 9l Hartmann M, Daniliuc CG, Studer A. Chem. Commun. 2015; 51: 3121
- 9m Leifert D, Studer A. Org. Lett. 2015; 17: 386
- 9n Anton-Torrecillas C, Felipe-Blanco D, Gonzalez-Gomez JC. Org. Biomol. Chem. 2016; 14: 10620
- 9o Jia F.-C, Xu C, Zhou Z.-W, Cai Q, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 5232
- 9p Zhang L, Yang H, Jiao L. J. Am. Chem. Soc. 2016; 138: 7151
- 9q Budén ME, Bardagi JI, Puiatti M, Rossi RA. J. Org. Chem. 2017; 82: 8325
- 9r Taniguchi T, Naka T, Imoto M, Takeda M, Nakai T, Mihara M, Mizuno T, Nomoto A, Ogawa A. J. Org. Chem. 2017; 82: 6647
- 9s Barham JP, Dalton SE, Allison M, Nocera G, Young A, John MP, McGuire T, Campos S, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2018; 140: 11510
- 9t Guo Z, Li M, Mou X.-Q, He G, Xue X.-S, Chen G. Org. Lett. 2018; 20: 1684
- 9u Shirakawa E, Hayashi T. Chem. Lett. 2012; 41: 130
- 9v Shirakawa E, Watabe R, Murakami T, Hayashi T. Chem. Commun. 2013; 49: 5219
- 9w Shirakawa E, Tamakuni F, Kusano E, Uchiyama N, Konagaya W, Watabe R, Hayashi T. Angew. Chem. Int. Ed. 2014; 53: 521
- 9x Ueno R, Ikeda Y, Shirakawa E. Eur. J. Org. Chem. 2017; 2017: 4188
- 9y Ikeda Y, Ueno R, Akai Y, Shirakawa E. Chem. Commun. 2018; 54: 10471
- 9z Kiriyama K, Okura K, Tamakuni F, Shirakawa E. Chem. Eur. J. 2018; 24: 4519
- 9aa Okura K, Teranishi T, Yoshida Y, Shirakawa E. Angew. Chem. Int. Ed. 2018; 57: 7186
- 10 Shirakawa and Hayashi reported that their cross-coupling reaction did not proceed without t -BuOM [see Ref. 9(c)].
- 11 Caminos DA, Garro AD, Soria-Castro SM, Alicia B, Peñéñory AB. RSC Adv. 2015; 5: 20058
- 12 It is known that the addition of TEMPO suppresses SRN1-type reactions; see refs 9(a), 9(d), and 9(e).
- 13 1-Naphthonitrile (2a); Typical ProcedureA solution of 1-iodonaphthalene (127 mg, 0.50 mmol), Et4NCN (391 mg, 2.50 mmol), and 1,10-phenanthroline (18.2 mg, 0.1 mmol) in DMSO (1 mL) was stirred at 130 °C for 1 h. H2O (15 mL) was added and the resulting mixture was extracted with EtOAc (3 × 5 mL). The combined organic phase was dried (MgSO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, hexane–EtOAc (30:1)] to give a yellow oil; yield: 59.5 mg (0.39 mmol, 78%).IR (neat): 3061, 2222, 1591, 1512, 1375 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.53 (t, J = 7.8 Hz, 1 H), 7.63 (t, J = 7.6 Hz, 1 H), 7.70 (t, J = 7.9 Hz, 1 H), 7.87–7.96 (m, 2 H), 8.08 (d, J = 7.9 Hz, 1 H), 8.24 (d, J = 7.9 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 110.0, 117.7, 124.8, 125.0, 127.4, 128.5, 128.6, 132.2, 132.5, 132.8, 133.2.
For reviews, see:
For recent examples, see:
For recent representative reports, see:
For representative examples, see: