Synlett 2019; 30(17): 1940-1949
DOI: 10.1055/s-0037-1611890
account
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in Equilibrium Acidity Studies of Organocatalysts

Zhen Li
a   Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: jinpei_cheng@mail.tsinghua.edu.cn
,
Xin Li
b   State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. of China   Email: xin_li@nankai.edu.cn
,
Jin-Pei Cheng
a   Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: jinpei_cheng@mail.tsinghua.edu.cn
b   State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. of China   Email: xin_li@nankai.edu.cn
› Author Affiliations
This work was supported by the Natural Science Foundation of China (21772098, 21390400, 21602116), and Tsinghua University Initiative Scientific Research Program (20131080083, 20141081295).
Further Information

Publication History

Received: 23 May 2019

Accepted after revision: 26 June 2019

Publication Date:
10 July 2019 (online)


Dedicated to the 100th anniversary of Nankai University

Abstract

This account summarizes our recent work on the pK a scales of some frequently used organocatalysts, especially those of hydrogen-bond-donor catalysts and stronger Brønsted acid catalysts. Most of these pK a values were obtained by the Bordwell overlapping indicator method, which is known to provide high accuracy. Linear free-energy relationships associated with pK a values are discussed in relation to understanding of reaction mechanisms.

1 Introduction

2 Single Hydrogen-Bonding Donors

2.1 Proline-Type Organocatalysts

2.2 Cinchona Alkaloids Bearing a Hydrogen-Bonding Donor in the 6′-Position

3 Double-Hydrogen-Bonding Donors

3.1 Thioureas

3.2 Squaramides

3.3 BINOLs

4 Stronger Brønsted Acids

5 N-Heterocyclic Carbenes

6 Summary and Outlook

 
  • References

  • 2 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
    • 3a Taft RW. J. Am. Chem. Soc. 1952; 74: 2729
    • 3b Taft RW. J. Am. Chem. Soc. 1952; 74: 3120
    • 3c Taft RW. J. Am. Chem. Soc. 1953; 75: 4538
  • 4 Charton M. J. Am. Chem. Soc. 1975; 97: 1552
  • 5 Jensen KH, Sigman MS. Angew. Chem. Int. Ed. 2007; 46: 4748
    • 7a Jacobsen EN, Zhang W, Guler ML. J. Am. Chem. Soc. 1991; 113: 6703
    • 7b Santiago CB, Guo J.-Y, Sigman MS. Chem. Sci. 2018; 9: 2398
  • 8 Yang C, Zhang E.-G, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 6506
    • 9a Gilli P, Pretto L, Gilli G. J. Mol. Struct. 2007; 844–845: 328
    • 9b Gilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press; Oxford: 2009
    • 9c Gilli P, Pretto L, Bertolasi V, Gilli G. Acc. Chem. Res. 2009; 42: 33
  • 10 Matthews WS, Bares JE, Bartmess JE, Bordwell FG, Cornforth FJ, Drucker GE, Margolin Z, McCallum RJ, McCollum GJ, Vanier NR. J. Am. Chem. Soc. 1975; 97: 7006
    • 11a Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR. Org. Lett. 2012; 14: 1724
    • 11b Dunn MH, Konstandaras N, Cole ML, Harper JB. J. Org. Chem. 2017; 82: 7324
    • 11c Rombola M, Sumaria CS, Montgomery TD, Rawal VH. J. Am. Chem. Soc. 2017; 139: 5297
    • 12a Ho J, Coote ML. Theor. Chem. Acc. 2009; 125: 3
    • 12b Ho J, Coote ML. J. Chem. Theory Comput. 2009; 5: 295
    • 12c Ho J, Coote ML, Franco-Pérez M, Gómez-Balderas R. J. Phys. Chem. A 2010; 114: 11992
    • 12d Zhang S, Baker J, Pulay P. J. Phys. Chem. A 2010; 114: 432
    • 12e Ho J, Coote ML. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011; 1: 649
    • 12f Marenich AV, Ding W, Cramer CJ, Truhlar DG. J. Phys. Chem. Lett. 2012; 3: 1437
    • 12g Sharma I, Kaminski GA. J. Comput. Chem. 2012; 33: 2388
    • 12h Zhang S. J. Comput. Chem. 2012; 33: 517
  • 13 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
    • 14a List B, Hoang L, Bahmanyar S, Houk KN, List B. J. Am. Chem. Soc. 2002; 125: 16
    • 14b Houk KN, Allemann C, Gordillo R, Clemente FR, Cheong PH.-Y, Houk KN. Acc. Chem. Res. 2004; 37: 558
    • 14c Saito S, Yamamoto H. Acc. Chem. Res. 2004; 37: 570
    • 14d Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
  • 15 Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H, Yamamoto H. Angew. Chem. Int. Ed. 2004; 43: 1983
  • 16 Gong L.-Z, Tang Z, Yang Z.-H, Chen X.-H, Cun L.-F, Mi A.-Q, Jiang Y.-Z, Gong L.-Z. J. Am. Chem. Soc. 2005; 127: 9285
  • 17 Li Z, Li X, Ni X, Cheng J.-P. Org. Lett. 2015; 17: 1196
    • 18a Zhou Y, Shan Z. J. Org. Chem. 2006; 71: 9510
    • 18b Reis Ö, Eymur S, Reis B, Demir AS. Chem. Commun. 2009; 1088
    • 18c El-Hamdouni N, Companyó X, Rios R, Moyano A. Chem. Eur. J. 2010; 16: 1142
    • 18d Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, del Amo V. Org. Lett. 2011; 13: 3032
    • 18e Martínez-Castañeda Á, Rodríguez-Solla H, Concellón C, del Amo V. J. Org. Chem. 2012; 77: 10375
    • 18f Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, del Amo V. Chem. Eur. J. 2012; 18: 5188
  • 19 Xue X.-S, Yang C, Li X, Cheng J.-P. J. Org. Chem. 2014; 79: 1166
  • 20 Iwabuchi Y, Nakatani M, Yokoyama N, Hatakeyama S. J. Am. Chem. Soc. 1999; 121: 10219
    • 21a Marcelli T, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 7496
    • 21b Chauhan P, Chimni SS. RSC Adv. 2012; 2: 737
    • 22a Li H, Wang Y, Tang L, Wu F, Liu X, Guo C, Foxman BM, Deng L. Angew. Chem. Int. Ed. 2005; 44: 105
    • 22b Brandes S, Bella M, Kjærsgaard A, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 1147
    • 22c Li H, Wang B, Deng L. J. Am. Chem. Soc. 2006; 128: 732
    • 22d Wang Y, Li H, Wang Y.-Q, Liu Y, Foxman BM, Deng L. J. Am. Chem. Soc. 2007; 129: 6364
    • 22e Li L, Ganesh M, Seidel D. J. Am. Chem. Soc. 2009; 131: 11648
    • 22f Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
    • 22g Denis J.-B, Masson G, Retailleau P, Zhu J. Angew. Chem. Int. Ed. 2011; 50: 5356
    • 22h Wu Y, Singh RP, Deng L. J. Am. Chem. Soc. 2011; 133: 12458
    • 22i Xiao X, Xie Y, Su C, Liu M, Shi Y. J. Am. Chem. Soc. 2011; 133: 12914
    • 22j Buyck T, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 12714
    • 22k Xue X.-S, Li X, Yu A, Yang C, Song C, Cheng J.-P. J. Am. Chem. Soc. 2013; 135: 7462
    • 22l Corbett MT, Johnson JS. Angew. Chem. Int. Ed. 2014; 53: 255
    • 22m Zheng P.-F, Ouyang Q, Niu S.-L, Shuai L, Yuan Y, Jiang K, Liu T.-Y, Chen Y.-C. J. Am. Chem. Soc. 2015; 137: 9390
  • 23 Ni X, Li X, Cheng J.-P. Org. Chem. Front. 2016; 3: 170
    • 24a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
    • 24b Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
    • 24c Fang Y.-Q, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 5660
    • 24d Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 25a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 25b Hoashi Y, Yabuta T, Takemoto Y. Tetrahedron Lett. 2004; 45: 9185
    • 25c Okino T, Nakamura S, Furukawa T, Takemoto Y. Org. Lett. 2004; 6: 625
    • 25d Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
    • 25e Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y. Tetrahedron 2006; 62: 365
    • 25f Inokuma T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2006; 128: 9413
    • 26a McCooey SH, Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
    • 26b Song J, Wang Y, Deng L. J. Am. Chem. Soc. 2006; 128: 6048
    • 26c Wang J, Li H, Zu L, Jiang W, Xie H, Duan W, Wang W. J. Am. Chem. Soc. 2006; 128: 12652
    • 26d Wang Y.-Q, Song J, Hong R, Li H, Deng L. J. Am. Chem. Soc. 2006; 128: 8156
    • 26e Wang J, Xie H, Li H, Zu L, Wang W. Angew. Chem. Int. Ed. 2008; 47: 4177
    • 27a Huang H, Jacobsen EN. J. Am. Chem. Soc. 2006; 128: 7170
    • 27b Lalonde MP, Chen Y, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 6366
    • 27c Liu K, Cui H.-F, Nie J, Dong K.-Y, Li X.-J, Ma J.-A. Org. Lett. 2007; 9: 923
    • 27d Tsogoeva SB, Wei S, Freund M, Mauksch M. Angew. Chem. Int. Ed. 2009; 48: 590
    • 28a Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
    • 28b Zuend SJ, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 15872
    • 28c Yalalov DA, Tsogoeva SB, Shubina TE, Martynova IM, Clark T. Angew. Chem. Int. Ed. 2008; 47: 6624
  • 29 Li X, Deng H, Zhang B, Li J, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 450
  • 30 Li X, Zhang B, Xi Z.-G, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 416
    • 31a Li X, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 14290
    • 31b Li X, Xi Z, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 1097
    • 31c Li S, Zhang E, Feng J, Li X. Org. Chem. Front. 2017; 4: 2301
  • 32 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 33a Qian Y, Ma G, Lv A, Zhu H.-L, Zhao J, Rawal VH. Chem. Commun. 2010; 46: 3004
    • 33b Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
    • 33c Song H.-L, Yuan K, Wu X.-Y. Chem. Commun. 2011; 47: 1012
    • 33d Albrecht Ł, Dickmeiss G, Cruz Acosta F, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
    • 33e Jiang H, Rodríguez-Escrich C, Johansen TK, Davis RL, Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 10271
    • 33f Su Y, Ling J.-B, Zhang S, Xu P.-F. J. Org. Chem. 2013; 78: 11053
    • 33g Wu L, Wang Y, Song H, Tang L, Zhou Z, Tang C. Adv. Synth. Catal. 2013; 355: 1053
    • 33h Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
    • 33i Sun W, Hong L, Zhu G, Wang Z, Wei X, Ni J, Wang R. Org. Lett. 2014; 16: 544
  • 34 Ni X, Li X, Wang Z, Cheng J.-P. Org. Lett. 2014; 16: 1786
    • 36a McDougal NT, Schaus SE. J. Am. Chem. Soc. 2003; 125: 12094
    • 36b Wu TR, Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
    • 36c Yu SH, Ferguson MJ, McDonald R, Hall DG. J. Am. Chem. Soc. 2005; 127: 12808
    • 36d Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2006; 128: 12660
    • 36e Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2006; 128: 3116
    • 36f Wu TR, Chong JM. J. Am. Chem. Soc. 2007; 129: 4908
    • 36g Barnett DS, Moquist PN, Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 8679
    • 36h Le PQ, Nguyen TS, May JA. Org. Lett. 2012; 14: 6104
  • 37 Ni X, Li X, Li Z, Cheng J.-P. Org. Chem. Front. 2016; 3: 1154
    • 38a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 38b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 38c Nakashima D, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
    • 38d Cheon CH, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 9246
    • 39a Yang C, Xue X.-S, Jin J.-L, Li X, Cheng J.-P. J. Org. Chem. 2013; 78: 7076
    • 39b Yang C, Xue X.-S, Li X, Cheng J.-P. J. Org. Chem. 2014; 79: 4340
    • 39c Yang C, Xue X.-S, Jin J.-L, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 10756
    • 41a Enders D, Breuer K, Raabe G, Runsink J, Teles JH, Melder J.-P, Ebel K, Brode S. Angew. Chem. Int. Ed. 1995; 34: 1021
    • 41b Knight RL, Leeper FJ. J. Chem. Soc., Perkin Trans. 1 1998; 1891
    • 42a Rovis T. Chem. Lett. 2008; 37: 2
    • 42b Kaeobamrung J, Kozlowski MC, Bode JW. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20661
    • 42c Mahatthananchai J, Bode JW. Chem. Sci. 2012; 3: 192
  • 43 Bordwell FG, Satish AV. J. Am. Chem. Soc. 1991; 113: 985
  • 44 Chu Y, Deng H, Cheng J.-P. J. Org. Chem. 2007; 72: 7790
  • 45 Li Z, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 9675
  • 46 Internet Bond-Energy Databank (pK a and BDE)–iBonD Home Page. http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn (accessed July 3, 2019). For a detailed introduction to iBonD, see: Mayr H.; ChemistryViews; DOI: 10.1002/chemv.201600113