CC BY-ND-NC 4.0 · SynOpen 2019; 03(04): 91-95
DOI: 10.1055/s-0037-1611922
letter
Copyright with the author(s) (2019) The author(s)

Copper-Catalyzed Amination of Vinyl Azides to α-Ketoamides

Yu Wang
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng224007, P. R. of China   Email: fangzhongxue120@163.com
,
Dongling Zhang
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng224007, P. R. of China   Email: fangzhongxue120@163.com
,
Kaining Zhang
b  College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. of China   Email: liuzhenhua2012@163.com
,
Zhenhua Liu
b  College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. of China   Email: liuzhenhua2012@163.com
,
Jing Lin
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng224007, P. R. of China   Email: fangzhongxue120@163.com
,
Wei Cao
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng224007, P. R. of China   Email: fangzhongxue120@163.com
,
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng224007, P. R. of China   Email: fangzhongxue120@163.com
› Author Affiliations
The authors wish to thank the National Natural Science Foundation of China (21605097), the Natural Science Foundation of Shandong Province of China (ZR2016BQ01), the China Postdoctoral Science Foundation (2017M610442), and The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB610021).
Further Information

Publication History

Received: 01 July 2019

Accepted after revision: 19 August 2019

Publication Date:
02 October 2019 (online)

Abstract

An efficient approach for the amination of vinyl azides with N,N-dialkylacylamides has been developed. By using this protocol, structurally important α-ketoamides can be easily synthesized. The key to success is not only the introduction of a Cu(I)/oxygen catalytic system but also the utilization of t-BuOCl and benzoic acid as additives. The reaction is operationally simple, scalable, and displays broad scope and functional group tolerance. A possible mechanism involving copper-catalyzed oxidative generation of peroxide radicals is proposed.

 
  • References and Notes


    • For recent progress in the synthesis of vinyl azides, see:
    • 1a Liu Z, Liu J, Zhang L, Liao P, Song J, Bi X. Angew. Chem. Int. Ed. 2014; 53: 5305
    • 1b Liu Z, Liao P, Bi X. Org. Lett. 2014; 16: 3668
    • 2a Lopez E, Lopez L. Angew. Chem. Int. Ed. 2017; 56: 5121
    • 2b Shu W, Lorente A, Gómez-Bengoa E, Nevado C. Nat. Commun. 2017; 8: 13832
    • 2c Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
    • 2d Wang Y.-F, Chiba S. J. Am. Chem. Soc. 2009; 131: 12570
    • 2e Wang Y.-F, Toh KK, Lee J.-Y, Chiba S. Angew. Chem. Int. Ed. 2011; 50: 5927
    • 3a Lin C, Shen Y, Huang B, Liu Y, Cui S. J. Org. Chem. 2017; 82: 3950
    • 3b Zhang Z, Kumar RK, Li G, Wu D, Bi X. Org. Lett. 2015; 17: 6190
    • 3c Zhang F.-L, Wang Y.-F, Lonca GH, Zhu X, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390
    • 3d Qin C, Feng P, Ou Y, Shen T, Wang T, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 7850
    • 4a Qin H.-T, Wu S.-W, Liu J.-L, Liu F. Chem. Commun. 2017; 53: 1696
    • 4b Chen W, Liu X, Chen E, Chen B, Shao J, Yu Y. Org. Chem. Front. 2017; 4: 1162
    • 5a Xu H.-D, Zhou H, Pan Y.-P, Ren X.-T, Wu H, Han M, Han R.-Z, Shen M.-H. Angew. Chem. Int. Ed. 2016; 55: 2540
    • 5b Farney EP, Yoon TP. Angew. Chem. Int. Ed. 2014; 53: 793
  • 6 Wu S.-W, Liu F. Org. Lett. 2016; 18: 3642
  • 7 Wang Y.-F, Lonca GH, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 1067
  • 8 Ning Y, Zhao X.-F, Wu Y.-B, Bi X. Org. Lett. 2017; 19: 6240
    • 9a Wang Y, Wei C, Tang R, Zhan H, Lin J, Liu Z, Tao W, Fang Z. Org. Biomol. Chem. 2018; 16: 6191
    • 9b Fang Z, Feng Y, Dong H, Li D, Tang T. Chem. Commun. 2016; 52: 11120
    • 9c Liu J, Fang Z, Zhang Q, Liu Q, Bi X. Angew. Chem. Int. Ed. 2013; 125: 7091
    • 9d Fang Z, Yuan H, Liu Y, Tong Z, Li H, Yang J, Barry B.-D, Liu J, Liao P, Zhang J, Liu Q, Bi X. Chem. Commun. 2012; 48: 8802
    • 9e Wang K, Bi X, Xing S, Liao P, Fang Z, Meng X, Zhang Q, Liu Q, Ji Y. Green Chem. 2011; 13: 562
    • 10a Blackburn EA, Walkinshaw MD. Curr. Opin. Pharmacol. 2011; 11: 365
    • 10b Álvarez S, Álvarez R, Khanwalkar H, Germain P, Lemaire G, Rodríguez-Barrios F, Gronemeyer H, de Lera AR. Bioorg. Med. Chem. 2009; 17: 4345
    • 10c Avolio S, Robertson K, Hernando JI. M, DiMuzio J, Summa V. Bioorg. Med. Chem. Lett. 2009; 19: 2295
    • 10d Knust H, Nettekoven M, Pinard E, Roche O, Rogers-Evans M. PCT Int. Appl. WO 2009016087, 2009
    • 10e Njoroge F, Chen KX, Shih N.-Y, Piwinski JJ. Acc. Chem. Res. 2008; 41: 50
    • 10f De Clercq E. Nat. Rev. Drug Discovery 2007; 6: 1001
  • 11 Liang S, Zeng C.-C, Tian H.-Y, Sun B.-G, Luo X.-G, Ren F.-Z. J. Org. Chem. 2016; 81: 11565
    • 12a Hayashi H, Kaga A, Chiba S. J. Org. Chem. 2017; 82: 11981
    • 12b Liu H, Feng M, Jiang X. Chem. Asian J. 2014; 9: 3360
    • 12c Ding S, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226
    • 12d Liu Z.-Q, Zhao L, Shang X, Cui Z. Org. Lett. 2012; 14: 3218
    • 12e Rolff M, Schottenheim J, Decker H, Tuczek F. Chem. Soc. Rev. 2011; 40: 4077
    • 12f Too PC, Chua SH, Wong SH, Chiba S. J. Org. Chem. 2011; 76: 6159
    • 12g Chiba S, Zhang L, Ang GY, Hui BW.-Q. Org. Lett. 2010; 12: 2052
    • 12h Que LJ, Tolman WB. Nature 2008; 455: 333
    • 12i Cramer CJ, Tolman WB. Acc. Chem. Res. 2007; 40: 601
    • 12j Arends I, Gamez P, Sheldon RA. Adv. Inorg. Chem. 2006; 58: 235
    • 12k Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TD. P. Science 2005; 308: 1890
    • 12l Prigge ST, Eipper BA, Mains RE, Amzel LM. Science 2004; 304: 864
    • 12m Wang Y, DuBios JL, Hedman B, Hodgson KO, Stack TD. P. Science 1998; 279: 537
    • 12n Manis PA, Rathke MW. J. Org. Chem. 1980; 45: 4952
  • 13 Fu J, Zanoni G, Anderson EA, Bi X. Chem. Soc. Rev. 2017; 46: 7208
  • 14 Synthesis of 4a; Typical Procedure: To a solution of α-azido styrene (1a; 72.5 mg, 0.5 mmol), tert-butyl hypochlorite (113.1 μL, 1.0 mmol), and benzoic acid (122.1 mg, 1.0 mmol) in N,N-diethylformamide (2b; 1 mL) at room temperature, CuI (28.6 mg, 0.15 mmol) was added. The reaction mixture was heated at 100 °C and stirred for 5 h under an oxygen atmosphere, when TLC analysis confirmed that substrate 1a had been consumed. The resulting reaction mixture was cooled to room temperature and K2CO3 was added. The mixture was extracted with dichloromethane (3 × 15 mL), and the combined organic extracts were washed with brine (3 × 40 mL), dried over MgSO4, filtered and concentrated. Purification of the crude product by flash column chromatography (silica gel; petroleum ether) afforded 4a (77% yield) as a yellow oil. N,N-Diethyl-2-oxo-2-phenylacetamide (4a): 1H NMR (400 MHz, CDCl3): δ = 7.93 (d, J = 7.1 Hz, 2 H), 7.64 (t, J = 7.4 Hz, 1 H), 7.51 (t, J = 7.7 Hz, 2 H), 3.61–3.53 (m, 2 H), 3.29–3.20 (m, 2 H), 1.29 (t, J = 7.2 Hz, 3 H), 1.16 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 191.5, 166.7, 134.5, 133.2, 129.6, 128.9, 42.0, 38.7, 14.0, 12.8. HRMS (ESI): m/z [M + H]+ calcd for C12H15NO2: 206.1181; found: 206.1142.