Adipositas - Ursachen, Folgeerkrankungen, Therapie 2013; 07(03): 154-158
DOI: 10.1055/s-0037-1618817
Serie Hypertonie: Übersichtsarbeit
Schattauer GmbH

Natriuretische Peptide als Regulatoren des Fettsäure- und Glukosestoffwechsels

Regulation of fatty acid and glucose metabolism by natriuretic peptides
S. Engeli
1   Institut für Klinische Pharmakologie, Medizinische Hochschule Hannover
,
J. Reinke
2   Center of Cardiovascular Research, Charité Universitätsmedizin Berlin
,
A. Birkenfeld
2   Center of Cardiovascular Research, Charité Universitätsmedizin Berlin
,
J. Jordan
1   Institut für Klinische Pharmakologie, Medizinische Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Publication Date:
21 December 2017 (online)

Zusammenfassung

Die natriuretischen Peptide ANP und BNP werden überwiegend im Herzen gebildet und dienen als kardiovaskuläre Hormone mit Schutzfunktion für das Herz über hämodynamische Wirkungen wie Natriurese, Vasodilatation und Blutdrucksenkung. Neuere Befunde zeigen, dass die natriuretischen Peptide aber auch den Fettsäure- und Glukosestoffwechsel beeinflussen. Die Freisetzung von Fettsäuren aus dem Fettgewebe und die Nutzung der Fettsäuren in der Muskulatur werden durch natriuretische Peptide stimuliert. Im Muskel führen natriuretische Peptide zu einer gesteigerten Mitochondrienmasse und einer verbesserten oxidativen Kapazität, was sich unmittelbar auch günstig auf die Insulinsensitivität auswirkt. Bei Adipositas und Typ- 2-Diabetes mellitus wurden erniedrigte Plasmakonzentrationen der natriuretischen Peptide beschrieben. Dies könnte zu den Stoffwechselproblemen dieser Patienten beitragen. Zu den Maßnahmen, die die Signalwege der natriuretischen Peptide verstärken, gehört z. B. körperliches Training. Neuere pharmakologische Ansätze, die hier eingreifen, sind in der Entwicklung und sollten hinsichtlich ihrer Wirkungen auf den Fettsäure- und Glukosestoffwechsel evaluiert werden.

Summary

Natriuretic peptides, ANP and BNP, are secreted primarily by the heart. These cardiovascular hormones reduce pre- and afterload by mechanisms as natriuresis, vasodilation and decreased blood pressure, thereby protecting the heart. New research has focused on the effects of natriuretic peptides on fatty acid and glucose metabolism. Release of fatty acids from adipose tissue and enhanced lipid oxidation in the skeletal muscle were described. Direct effects in skeletal muscle fibers include increased mitochondrial mass and enhanced oxidative capacity, ultimately leading to increased insulin sensitivity. Natriuretic peptides are reduced in obesity and type 2 diabetes mellitus which may contribute to the well known metabolic deteriorations that complicate these conditions. A way to improve natriuretic peptide signaling is increased physical activity. New pharmacological approaches that enhance natriuretic peptide effects are under development. A thorough analysis of their metabolic effects appears warranted.

 
  • Literatur

  • 1 Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. I: Natriuretic peptides. J Hypertens 1992; 10: 907-912.
  • 2 Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J Hypertens 1992; 10: 1111-1114.
  • 3 Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339: 321-328.
  • 4 Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophoshate-dependent signaling functions. Endocrine Reviews 2006; 27 (01) 47-72.
  • 5 Melo LG, Veress AT, Chong CK, Pang SC, Flynn TG, Sonnenberg H. Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol 274: R255-R261.
  • 6 Sengenès C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. tNatriuretic peptides: a new lipolytic pathway in human adipocytes FASEB J 2000; Jul; 14 10; 1345-1351.
  • 7 Engeli S, Janke J, Gorzelniak K, Böhnke J, Ghose N, Lindschau C, Luft FC, Sharma AM. Regulation of the nitric oxide system in human adipose tissue. J Lipid Res 2004; Sep; 45 (09) 1640-1648.
  • 8 Moro C, Galitzky J, Sengenes C, Crampes F, Lafontan M, Berlan M. Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells. J Pharmacol Exp Ther 2004; Mar; 308 (03) 984-992.
  • 9 Sengenes C, Bouloumie A, Hauner H. et al. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003; December 05 278 (49) 48617-48626.
  • 10 Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J Clin Endocrinol Metab 2005; Jun; 90 (06) 3622-3628.
  • 11 Moro C, Pillard F, De Glisezinski I, Harant I, Rivière D, Stich V, Lafontan M, Crampes F, Berlan M. Training enhances ANP lipid-mobilizing action in adipose tissue of overweight men. Med Sci Sports Exerc 2005; Jul; 37 (07) 1126-1132.
  • 12 Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Tank J, Diedrich A, Schroeder C, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J. Beta-adrenergic and atrial natriuretic peptide interactions on human cardiovascular and metabolic regulation. J Clin Endocrinol Metab 2006; Dec; 91 (12) 5069-5075.
  • 13 Moro C, Pillard F, de Glisezinski I, Klimcakova E, Crampes F, Thalamas C, Harant I, Marques MA, Lafontan M, Berlan M. Exercise-induced lipid mobilization in subcutaneous adipose tissue is mainly related to natriuretic peptides in overweight men. Am J Physiol Endocrinol Metab 2008; Aug; 295 (02) E505-513.
  • 14 Birkenfeld AL, Adams F, Schroeder C, Engeli S, Jordan J. Metabolic actions could confound advantageous effects of combined angiotensin II receptor and neprilysin inhibition. Hypertension 2011; Feb; 57 (02) e4-5.
  • 15 Birkenfeld AL, Boschmann M, Engeli S, Moro C, Arafat AM, Luft FC, Jordan J. Atrial natriuretic peptide and adiponectin interactions in man. PLoS One 2012; 07 (08) e43238.
  • 16 Moro C, Klimcakova E, Lolmède K, Berlan M, Lafontan M, Stich V, Bouloumié A, Galitzky J, Arner P, Langin D. Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia 2007; May; 50 (05) 1038-1047.
  • 17 Sarzani R, Paci VM, Zingaretti CM, Pierleoni C, Cinti S, Cola G, Rappelli A, Dessì-Fulgheri P. Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J Hypertens 1995; Nov; 13 (11) 1241-1246.
  • 18 Dessi-Fulgheri P, Sarzani R, Tamburrini P. et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens 1997; December; 15 (12 Pt 2); 1695-1699.
  • 19 Dessì-Fulgheri P, Sarzani R, Serenelli M, Tamburrini P, Spagnolo D, Giantomassi L, Espinosa E, Rappelli A. Low calorie diet enhances renal, hemodynamic, and humoral effects of exogenous atrial natriuretic peptide in obese hypertensives. Hypertension 1999; 33 (02) 658-662.
  • 20 Engeli S, Sharma AM. The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J Mol Med (Berl) 2001; 79 (01) 21-29.
  • 21 McCord J, Mundy BJ, Hudson MP, Maisel AS, Hollander JE, Abraham WT, Steg PG, Omland T, Knudsen CW, Sandberg KR, McCullough PA. Relationship between obesity and B-type natriuretic peptide levels. Arch Intern Med 2004; 164: 2247-2252.
  • 22 Neeland IJ, Winders BR, Ayers CR, Das SR, Chang AY, Berry JD, Khera A, McGuire DK, Vega GL, de Lemos JA, Turer AT. Higher Natriuretic Peptide Levels Associate with a Favorable Adipose Tissue Distribution Profile. J Am Coll Cardiol 2013; Apr 16.
  • 23 Magnusson M, Jujic A, Hedblad B. et al. Low plasma level of atrial natriuretic peptide predicts development of diabetes: the prospective Malmo Diet and Cancer study. J Clin Endocrinol Metab 2012; February; 97 (02) 638-645.
  • 24 Birkenfeld AL, Budziarek P, Boschmann M. et al. Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 2008; December; 57 (12) 3199-3204.
  • 25 Miyashita K, Itoh H, Tsujimoto H. et al. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 2009; December; 58 (12) 2880-2892.
  • 26 Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; February 12; 350 (07) 664-671.
  • 27 Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; October; 51 (10) 2944-2950.
  • 28 Engeli S, Birkenfeld AL, Badin PM. et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest 2012; December 3; 122 (12) 4675-4679.
  • 29 Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; March 20; 92 (06) 829-839.
  • 30 Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; March; 116 (03) 615-622.
  • 31 Wiesner S, Birkenfeld AL, Engeli S, Haufe S, Brechtel L, Wein J, Hermsdorf M, Karnahl B, Berlan M, Lafontan M, Sweep FC, Luft FC, Jordan J. Neurohumoral and metabolic response to exercise in water. Horm Metab Res 2010; May; 42 (05) 334-339.
  • 32 Nisoli E, Clementi E, Paolucci C. et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 2003; February 7; 299 (5608); 896-899.
  • 33 Bordicchia M, Liu D, Amri EZ. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012; March 1; 122 (03) 1022-1036.
  • 34 Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K, Mayer P, Haas B, Sassmann A, Pfeifer A, Kilic A. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J 2013; Apr; 27 (04) 1621-1630.
  • 35 Moro C, Lafontan M. Natriuretic peptides and cGMP signaling control of energy homeostasis. Am J Physiol Heart Circ Physiol 2013; Feb 1; 304 (03) H358-368.
  • 36 Pfeifer A, Kiliæ A, Hoffmann LS. Regulation of metabolism by cGMP. Pharmacol Ther. 2013 Jun 10..
  • 37 Toth MJ, Matthews DE, Ades PA. et al. Skeletal muscle myofibrillar protein metabolism in heart failure: relationship to immune activation and functional capacity. Am J Physiol Endocrinol Metab 2005; April; 288 (04) E685-E692.
  • 38 Kemppainen J, Tsuchida H, Stolen K. et al. Insulin signalling and resistance in patients with chronic heart failure. J Physiol 2003; July 1; 550 (Pt 1): 305-315.
  • 39 Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 2010; 10; 375 (9722): 1255-1266.
  • 40 Kim M, Platt MJ, Shibasaki T. et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 2013; May; 19 (05) 567-575.