Osteologie 2015; 24(03): 152-157
DOI: 10.1055/s-0037-1622061
Implantat und Knochen
Schattauer GmbH

Biomechanische Testung in der Orthopädie und Wirbelsäulenchirurgie

Aktuelle Prüfverfahren und StandardsBiomechanical testing in orthopaedics and spinal surgery Current practices and standards
T. M. Grupp
1   Aesculap AG Forschung & Entwicklung, Tuttlingen
2   Ludwig-Maximilians-Universität München, Orthopädische Klinik, Campus Großhadern, München
,
C. Kaddick
3   EndoLab Mechanical Engineering GmbH, Thansau
,
M. Baxmann
1   Aesculap AG Forschung & Entwicklung, Tuttlingen
› Author Affiliations
Further Information

Publication History

eingereicht: 07 August 2015

angenommen: 24 August 2015

Publication Date:
02 January 2018 (online)

Zusammenfassung

Seit dem Beginn der neunziger Jahre haben sich die Wissensgebiete der experimentellen Orthopädie und Traumatologie, der Biomechanik und der Biotribologie in großen Schritten weiterentwickelt. Innovative, nachhaltige Produkte oder auch die Neukombination klinisch bewährter Designprinzipien können nur auf Basis tiefgreifender Kenntnisse der Biomechanik, der Biomaterialien und der klinischen Anwendung präklinisch evaluiert werden. Daher erfordert die Entwicklung leistungsfähiger Prüfmethoden zur Charakterisierung neuer Implantatsysteme die enge interdisziplinäre Zusammenarbeit von Implantatentwicklern, Operateuren, Biomechanikern, Biomaterialexperten und Biologen, sowie die aktive Mitarbeit in den internationalen Normungsgremien. Am Beispiel von ausgewählten Fragestellungen mit hoher klinischer Relevanz werden der Stand der Forschung und aktuelle Vorhaben bei der Entwicklung von neuen Prüfverfahren in der Gelenkendoprothetik und Wirbelsäulenchirurgie vorgestellt.

Summary

Since the beginning of the 1990s, the fields of knowledge in experimental orthopaedics and traumatology, biomechanics and biotribology have developed considerably. Innovative and sustainable products or also combinations of clinically proven design principles can only be pre-clinically evaluated on the basis of profound knowledge of biomechanics, biomaterials and the clinical application. Therefore, the development of suitable test methods for the characterization of new implant concepts requires interdisciplinary cooperation between research engineers, surgeons, biomechanic and material scientists, biologists and the active involvement in international standardization committees. The current state of research and development of test methods in joint endoprosthetics and spinal surgery is presented using selected issues of high clinical relevance.

 
  • Literatur

  • 1 Kaddick C, Blömer W. Sinn und Grenzen von Prüfnormen. Orthopäde 2014; 43 (06) 511-514.
  • 2 Grupp TM, Stulberg D, Kaddick C. et al. Fixed bearing knee congruency – influence on contact mechanics, abrasive wear and kinematics. Int J Artif Organs 2009; 32 (04) 213-223.
  • 3 Grupp TM, Holderied M, Mulliez MA. et al. Biotribology of a vitamin E stabilised polyethylene for hip arthroplasty – influence of artificial ageing and third-body particles on wear. Acta Biomater 2014; 10: 3068-3078.
  • 4 Baxmann M. Reibkorrosion modularer Halsverbindungen in der Hüftendoprothetik [Dissertation]. TU Hamburg-Harburg. 2014
  • 5 Kaddick C, Malczan M, Buechele C. et al. On the measurement of 3D taper moments due to friction and contact load in total hip replacement. J ASTM Int. 2015 [in press].
  • 6 McEwen HMJ, Barnett PI, Bell CJ. et al. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J Biomech 2005; 38: 35765.
  • 7 Bergmann G, Bender A, Graichen F. et al. Standardized loads acting in knee implants. PloS ONE 2014; 09 (01) e86035.
  • 8 Schwiesau J, Schilling C, Kaddick C. et al. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Med Eng Phys 2012; 35: 591-600.
  • 9 Schwiesau J, Schilling C, Utzschneider S. et al. Knee wear simulation under conditions of highly demanding daily activities – Influence on an unicompartmental fixed bearing knee design. Med Eng Phys 2013; 35: 1204-1211.
  • 10 Schwiesau J, Fritz B, Kutzner I. et al. CR TKA UHMWPE wear tested after artificial aging of the Vitamin E treated gliding component by simulating daily patient activities. BioMed Res Int. 2014 Article ID 567374.
  • 11 Schwiesau J, Fritz B, Kutzner I. et al. Wear mode of artificialy aged UHMWPE knee bearings Evaluated by The Simulation of daily Patient activities. European Society of Biomechanics. 2015 5-9 July, Prag..
  • 12 Grupp TM, Yue JJ, Garcia R. et al. Evaluation of impingement behaviour in lumbar spinal disc arthroplasty. Eur Spine J. 2014 Jun 6. [Epub ahead of print].
  • 13 van den Eerenbeemt KD, Ostelo van RoyenRW. et al. Total disc replacement surgery for symptomatic degenerative lumbar disc disease – a systematic review of the literature. Eur Spine J 2010; 19 (08) 1262-1280.
  • 14 Austen S, Punt IM, Cleutjens JPM. et al. Clinical, radiological, histological and retrieval findings of Activ-L and Mobidisc total disc replacements – a study of two patients. Eur Spine J 2012; 21 (04) 51320.
  • 15 Kurtz SM, Patwardhan A, MacDonald D. et al. What is the correlation of in vivo wear and damage patterns with in vitro TDR motion response. Spine 2008; 33 (05) 481-489.
  • 16 van Ooij A, Kurtz SM, Stessels F. et al. Polyethylene wear debris and long-term clinical failure of the Charité disc prosthesis. Spine 2007; 32 (02) 223-229.
  • 17 Kaefer W, Clessienne CB, Daexle M. et al. Posterior component impingement after lumbar total disc replacement – A radiographic analysis of 66 ProDisc-L prostheses in 56 patients. Spine 2008; 33 (22) 2444-2449.
  • 18 Lebl DR, Cammisa FP, Girardi FP. et al. In vivo functional performance of failed ProDisc-L devices. Spine 2012; 37 (19) E1209-E1217.
  • 19 Rundell SA, Day JS, Isaza J. et al. Derivation of clinically relevant boundary conditions suitable for evaluation of chronic impingement of lumbar total disk replacement: Application to standard development. J ASTM Int 2011; 08 (05) 1-14.