Tierarztl Prax Ausg K Kleintiere Heimtiere 2008; 36(01): 5-11
DOI: 10.1055/s-0038-1622653
Schattauer GmbH

Nozizeption und Schmerz: neurophysiologische Grundlagen

Nociception and pain: Basic neurophysiologic concepts
H. Pfannkuche
1   Veterinär-Physiologisches Institut (Institutsleiter: Prof. Dr. G. Gäbel) der Universität Leipzig
› Author Affiliations
Further Information

Publication History

Eingegangen:21 February 2007

akzeptiert:03 August 2007

Publication Date:
05 January 2018 (online)


Nozizeption bezeichnet die Aufnahme, Weiterleitung und Verarbeitung schmerzauslösender Reize im peripheren und zentralen Nervensystem. Die periphere Aufnahme der Reize erfolgt an Endigungen nozizeptiver Nervenzellen der Dorsalwurzelganglien. Die meisten Nozizeptoren können durch mechanische, thermische und chemische Reize sowie durch Entzündungsmediatoren erregt werden. Die nozizeptiven Neurone projizieren über die Dorsalwurzel ins Rückenmark. Hier erfolgt die Umschaltung sowohl auf Motoneurone als auch auf aszendierende, in Richtung Gehirn projizierende Bahnen. Das aszendierende System verläuft über den Thalamus unter anderem zum limbischen System und zum Kortex. Die Verschaltung der nozizeptiven Neurone auf spinale Motoneurone ermöglicht das reflektorische Wegziehen einer Extremität bei Verletzung. Die wichtigsten Neurotransmitter des aszendierenden Systems sind Substanz P und Glutamat. Neben dem aszendierenden System verfügt der Körper über ein deszendierendes System, das der körpereigenen Schmerzunterdrückung dient. Die wichtigsten Transmitter des deszendierenden Systems sind die endogenen Opioide. Das deszendierende System kann auch durch andere körpereigene Substanzen wie Serotonin, Adrenalin und Noradrenalin aktiviert werden. Letztere spielen eine wichtige Rolle zur Schmerzunterdrückung in Stresssituationen.


Nociception means reception, conduction and processing of painful stimuli in the peripheral and central nervous system. Reception is done by nerve terminals originating from nociceptive neurones located in the dorsal root ganglia. Most nociceptors are excited by mechanical, thermal and chemical stimuli as well as by inflammatory mediators. Nociceptive neurones project via the dorsal root into the dorsal horn of the spinal cord. In the spinal cord, information is transferred to motoneurones and onto ascending circuits, projecting to higher centres. The ascending system projects via thalamus to the limbic system and the cortex. Projection to spinal motoneurones enables the animal to remove extremities from noxious stimuli. The most important neurotransmitters of the ascending system are substance P and glutamate. Besides the ascending system a descending system can also modulate painful stimuli. The descending system endogeneously suppresses the conduction of pain. The most important neurotransmitters of the descending system are endogenous opioides. The descending system can also become activated by serotonin, epinephrine and norepinephrine. The latter are especially important for suppression of pain in fight or flight reactions.

  • Literatur

  • 1 Bhargava HN, Gulati A. Down-regulation of brain and spinal cord muopiate receptors in morphine tolerant-dependent rats. Eur J Pharmacol 1990; 190 (03) 305-311.
  • 2 Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 2005; 207 (01) 19-33.
  • 3 Bushnell MC. Thalamic processing of sensory-discriminative and affectivemotivational dimensions of pain. -In: Forebrain Areas Involved in Pain Processing. Besson JM, Giulbaud G, Olat H. eds Paris: John Libbey Eurotext; 1995: 63-78.
  • 4 Cervero F, Laird JM. Visceral pain. Lancet 1999; 353 9170 2145-2148.
  • 5 Cervero F, Tattersall JE. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn. J Physiol 1987; 388: 383-395.
  • 6 Coggeshall RE, Carlton SM. Receptor localization in the mammalian dorsal horn and primary afferent neurons. Brain Res Brain Res Rev 1997; 24 (01) 28-66.
  • 7 Fundytus ME. Glutamate receptors and nociception: implications for the drug treatment of pain. CNS Drugs 2001; 15 (01) 29-58.
  • 8 George LW. Pain control in food animals. In: Recent Advances in Anesthetic Management of Large Domestic Animals Steffey EP. ed Ithaca New York USA: International Veterinary Information Service nnnn.s;
  • 9 Gohar O. Contribution of Ion Channels in Pain Sensation. Modulator 2005; 19: 9-13.
  • 10 Harris JA. Descending antinociceptive mechanisms in the brainstem: their role in the animal’s defensive system. J Physiol Paris 1996; 90 (01) 15-25.
  • 11 Harris JA, Westbrook RF. Effects of benzodiazepine microinjection into the amygdala or periaqueductal gray on the expression of conditioned fear and hypoalgesia in rats. Behav Neurosci 1995; 109 (02) 295-304.
  • 12 Holden JE, Farah EN, Jeong Y. Stimulation of the lateral hypothalamus produces antinociception mediated by 5-HT1A, 5-HT1B and 5-HT3 receptors in the rat spinal cord dorsal horn. Neuroscience 2005; 135 (04) 1255-1268.
  • 13 Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001; 413 6852 203-210.
  • 14 Kandel ER, Schwartz JH, Jessel TM. Principles of Neural Science. New York: McGraw-Hill; 2000: 472-491.
  • 15 Kruger L, Perl ER, Sedivec MJ. Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J Comp Neurol 1981; 198 (01) 137-154.
  • 16 Le Bars D, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev 2001; 53 (04) 597-652.
  • 17 Mason P. Ventromedial medulla: Pain modulation and beyond. J Comp Neurol 2005; 493 (01) 2-8.
  • 18 Millan MJ. Multiple opioid systems and pain. Pain 1986; 27 (03) 303-347.
  • 19 Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev 1993; 73 (02) 229-308.
  • 20 Petrovic M, Horak M, Sedlacek M, Vyklicky Jr L. Physiology and pathology of NMDA receptors. Prague Med Rep 2005; 106 (02) 113-136.
  • 21 Price DD, Greenspan JD, Dubner R. Neurons involved in the exteroceptive function of pain. Pain 2003; 106 (03) 215-219.
  • 22 Riedel W, Neeck G. Nociception, pain, and antinociception: current concepts. Z Rheumatol 2001; 60 (06) 404-415.
  • 23 Sann H. Nozizeption und Schmerz. In: Physiologie der Haustiere von Engelhardt W, Breves G. Hrsg Stuttgart: Enke; 2004: 74-78.
  • 24 Schaible HG, Schmidt RF. Nozizeption und Schmerz. In: Physiologie des Menschen Schmidt RF, Lang F, Thews G. Hrsg Heidelberg: Springer; 2004: 318-333.
  • 25 Schmidt R, Schmelz M, Ringkamp M, Handwerker HO, Torebjork HE. Innervation territories of mechanically activated C nociceptor units in human skin. J Neurophysiol 1997; 78 (05) 2641-2648.
  • 26 Scholz J, Woolf CJ. Can we conquer pain?. Nat Neurosci 2002; 5 Suppl 1062-1067.
  • 27 Sewards TV, Sewards M. Separate, parallel sensory and hedonic pathways in the mammalian somatosensory system. Brain Res Bull 2002; 58 (03) 243-260.
  • 28 Shibasaki H. Central mechanisms of pain perception. Suppl Clin Neurophysiol 2004; 57: 39-49.
  • 29 Sivarao DV, Newberry K, Lodge NJ. Effect of the 5HT1A receptor partial agonist buspirone on colorectal distension-induced pseudoaffective and be havioral responses in the female Wistar rat. Eur J Pharmacol 2004; 494 (01) 23-29.
  • 30 Skljarevski V, Ramadan NM. The nociceptive flexion reflex in humans – review article. Pain 2002; 96 (01) (02) 3-8.
  • 31 Stegmann JU, Muth-Selbach U, Holthusen H. The significance of nitric oxide in nociception and spinal pain processing. Anasthesiol Intensivmed Notfallmed Schmerzther 2001; 36 (05) 276-81.
  • 32 Zimmermann M. Behavioural investigations of pain in animals. In: Assessing Pain in Farm Animals Ducan IJH, Molony Y. eds. Office for Official Publications of the European Communities Bruxelles 16-29.
  • 33 Zubrzycka M, Janecka A. Substance P. transmitter of nociception (Minireview). Endocr Regul 2000; 34 (04) 195-201.