Nervenheilkunde 2003; 22(09): 467-474
DOI: 10.1055/s-0038-1626335
Original- und Übersichtsarbeiten/Original and Review Articles
Schattauer GmbH

Körperliche Aktivität fördert Gehirngesundheit und -leistungsfähigkeit[*]

Übersicht und eigene BefundePhysical activity improves brain health and performancesurvey and own findings
W. Hollmann
1   Institut für Kreislaufforschung und Sportmedizin
,
H. K. Strüder
2   Institut für Individualsport, Deutsche Sporthochschule Köln
,
C. V. M. Tagarakis
1   Institut für Kreislaufforschung und Sportmedizin
› Author Affiliations
Further Information

Publication History

Publication Date:
18 January 2018 (online)

Zusammenfassung

Die heutigen bildgebenden und biochemischen Möglichkeiten erlauben Einblicke in hämodynamische und metabolische Reaktionen des menschlichen Gehirns bei dosierter Arbeit sowie vor und nach körperlichem Training. Dieses neue interdisziplinäre Forschungsgebiet nennen wir »Bewegungs-Neurowissenschaft«. Körperliche Aktivität beeinflusst offenbar positiv kognitive Gehirnfunktionen und altersbedingte Rückbildungserscheinungen. Dabei dürfte die zusätzliche regionale Gehirndurchblutung in Verbindung mit dynamischer Arbeit eine vermehrte Produktion von Nervenwachstumsfaktoren auslösen (brain derived neurotrophic factor = BDNF, IGF-1, u.a.). Hierdurch wird körperliche Bewegung zu einem stimulativen Faktor für Synapsen- und Spinebildung sowie für die Neurogenese. Veränderungen im metabolischen Geschehen des menschlichen Gehirns bei dosierter körperlicher Arbeit spielen hierbei ebenso eine Rolle wie endogene opioide Peptide, der Aminosäurentransport an der Blut-Hirn-Schranke und Neurotransmitterbeeinflussungen. Körperliche Bewegung mobilisiert auch Genexpressionen mit Auswirkungen auf die Gehirnplastizität. Es wird daher aus gesundheitlichen und leistungsbezogenen Gründen Beanspruchung auf allgemeine aerobe dynamische Ausdauer sowie auf Koordination für Gehirnstrukturen, Gehirnleistungsfähigkeit und Gehirngesundheit ebenso empfohlen, wie es seit Jahrzehnten für das kardio-pulmonal-metabolische System geschieht.

Summary

Modern visual and biochemical methods enable an insight into the brain hemodynamic and metabolic responses during acute physical work as well as before and after chronic exercise training. We call this new interdisciplinary area “Exercise-Neuroscience”. Obviously, physical activity has a positive influence on cognitive brain functions and age-related degeneration processes. In this context, increased regional cerebral blood flow during dynamic work probably induces an increase in production of nerve growth factors (brain derived neurotrophic factor = BDNF, IGF-1, etc.). Thus, physical exercise is a stimulus for the formation of synapses and spines as well as for neurogenesis. Metabolic changes in the human brain during physical work play a key role in these processes just like alterations in endogenous peptides, amino acid transport through the blood-brain barrier and affected neurotransmitters. Exercise also induces gene expression, thereby affecting brain plasticity. Consequently, in order to attain a better quality of health and performance capacity it could be recommended the engagement in general aerobic dynamic endurance and coordination exercise training. It can be suggested that this can improve brain structure, brain performance capacity, and brain health – just like it has been documented for the cardio-pulmonary-metabolic system many decades ago.

* Herrn Prof. Dr. h. c. Berthold Beitz, Förderer der Hirnforschung, zu seinem 90. Geburtstag in Dankbarkeit gewidmet.


 
  • Literatur

  • 1 Altar A, DiStefano PS. Neurotrophin trafficking by anterograde transport. Trends Neurosci 1998; 21: 433-7.
  • 2 Arentz T, De Meirleir K, Hollmann W. Die Rolle der endogenen opioiden Peptide während Fahrradergometerarbeit. Dtsch Z Sportmed 1986; 37: 210-9.
  • 3 Arsenijevic Y, Weiss S. Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J Neurosci 1998; 18: 2118-28.
  • 4 Bagdy G, Szemeredi K, Kanyicska B, Murphy DL. Different serotonin receptors mediate blood pressure, heart rate, plasma catecholamine and prolactin responses to m-chlorophenylpiperazine in conscious rats. J Pharmacol Exp Ther 1989; 250: 72-8.
  • 5 Barde YA. Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 1994; 390: 45-56.
  • 6 Berchtold NC, Kesslak JP, Pike CJ, Adlard PA, Cotman CW. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J Neurosci 2001; 14: 1992-2002.
  • 7 Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 1990; 87: 5568-72.
  • 8 Blomquist KB, Danner F. Effects of physical conditioning on information-processing efficiency. Percept Mot Skills 1987; 65: 175-86.
  • 9 Blumenthal JA, Fredrikson M, Kuhn CM, Ulmer RL, Walsh-Riddle M, Appelbaum M. Aerobic exercise reduces levels of cardiovascular and sympathoadrenal responses to mental stress in subjects without prior evidence of myocardial ischemia. Am J Cardiol 1990; 65: 93-8.
  • 10 Broocks A. Psychische Erkrankungen und körperliche Aktivität. In: Bundesärztekammer (Hrsg). Fortschritt und Fortbildung in der Medizin. Köln: Dtsch Ärzteverlag. 2002
  • 11 Broocks A, Bandelow B, Pekrun G, George A, Meyer T, Bartmann U, Hillmer-Vogel U, Ruther E. Comparison of aerobic exercise, clomipramine, and placebo in the treatment of panic disorder. Am J Psychiatry 1998; 155: 603-9.
  • 12 Candia V, Elbert T, Altenmüller E, Rau H, Schäfer T, Taub E. Constraint-induced movement therapy for focal hand dystonia in musicians. Lancet 1999; 353: 42.
  • 13 Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 2000; 20: 2926-33.
  • 14 Cotman CW, Berchtold NC. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25: 295-301.
  • 15 Cotman CW, Engesser-Cesar C. Exercise enhances and protects brain function. Exerc Sport Sci Rev 2002; 30: 75-9.
  • 16 Cramer SR, Niemann DC, Lee JW. The effects of moderate exercise training on psychological well-being and mood state in women. J Psychosom Res 1991; 35: 437-49.
  • 17 De Coverley Veale DMW. Exercise and mental health. Acta Psychiatr Scand 1987; 76: 113-20.
  • 18 De Meirleir K, Arentz T, Hollmann W, van Haelst L. The role of endogenous opiates in thermal regulation of the body during exercise. Br Med J 1985; 290: 739-40.
  • 19 De Meirleir K, Smitz J, van Steirteghem A, L’Hermite M, Hollmann W. Dopaminergic and serotoninergic neurotransmitter system are involved in exercise-induced release of adenohypophysial hormones. 6th Internat Symposium Biochem of Exercise, Copenhagen. 1985
  • 20 De Meirleir KJ, Gerlo F, Hollmann W, Vanhaelst L. Cardiovascular effects of pergolide mesylate during dynamic exercise. Brit J Clin Pharmacol 1987; 23: 633P-634P.
  • 21 Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science 1995; 270: 305-7.
  • 22 Eriksson PS, Perfilieva E, Björk-Eriksson Th, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med 1998; 04: 1313-7.
  • 23 Espejo EF, Minano FJ. Prefrontocortical dopamine depletion induces antidepressant-like effects in rats and alters the profile of desipramine during Porsolt’s test. Neuroscience 1999; 88: 609-15.
  • 24 Fernström JD, Wurtman RJ. Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science 1971; 173: 149-52.
  • 25 Fischer HG, Hollmann W, De Meirleir K. Exercise changes in plasma tryptophan fractions and relationship with prolactin. Int J Sports Med 1991; 12: 487-9.
  • 26 Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995; 375: 482-4.
  • 27 Friedland RP, Fritsch T, Smyth KA, Koss E, Lerner AJ, Chen CH, Petot GJ, Debanne SM. Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci USA 2001; 98: 3440-5.
  • 28 Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol 2001; 63: 29-60.
  • 29 Gomez-Pinilla F, Dao L, So V. Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res 1997; 764: 1-8.
  • 30 Hartmann S. Über den Einfluss von Ergometerarbeit während Wehentätigkeit auf das Schmerzempfinden. Dissertation Deutsche Sporthochschule, Köln. 2002
  • 31 Herholz K, Buskies W, Rist M, Pawlik G, Hollmann W, Heiss WD. Regional cerebral blood flow in man at rest and during exercise. J Neurol 1987; 234: 9-13.
  • 32 Herzog H, Unger C, Kuwert T, Fischer HG, Scholz D, Hollmann W, Feinendegen LE. Physical exercise does not increase cerebral metabolic rate of glucose utilization. XVth Internat Symposion on Cerebral Blood Flow and Metabolism, Miami. 1991
  • 33 Hollmann W, De Meirleir K, Fischer HG, Holzgraefe M. Über neuere Aspekte von Gehirn, Muskelarbeit, Sport und Psyche. Dtsch Z Sportmed 1993; 44: 478-90.
  • 34 Hollmann W, Fischer HG, De Meirleir K, Herzog H, Herholz K, Feinendegen LE. The brainregional cerebral blood flow, metabolism, and psyche during ergometer exercise. In: Bouchard C, Shephard RJ, Stephens TH. (eds). Physical Activity, Fitness and Health. Internat Proc. and Consensus Statement. Champaign: Human Kinetics; 1994
  • 35 Hollmann W, Hettinger Th. Sportmedizin – Grundlagen für Arbeit, Training und Präventivmedizin. Stuttgart: Schattauer; 2000
  • 36 Hollmann W, Löllgen H. Bedeutung der körperlichen Aktivität für kardiale und zerebrale Funktionen. In: Bundesärztekammer (Hrsg). Fortschritt und Fortbildung in der Medizin. Köln: Dtsch Ärzteverlag 2002
  • 37 Hollmann W, Strüder HK, Herzog H, Fischer HG, Platen P, De Meirleir KL, Donike M. Gehirn – hämodynamische, metabolische und psychische Aspekte bei körperlicher Arbeit. Dtsch Ärztebl 1996; 93: 2033-8.
  • 38 Hollmann W, Strüder HK. Zur Biochemie des Gehirns bei muskulärer Arbeit. Nervenheilkunde 1998; 17: 30-5.
  • 39 Hollmann W, Strüder HK, Tagarakis CVM. Übertraining – Ein Resultat der Hirnplastizität?. Dtsch Z Sportmed 2003; 54: 25-6.
  • 40 Holsboer F. The rationale for corticotropinreleasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999; 33: 181-214.
  • 41 Isaacs KR, Anderson KR, Alcantara AA, Black JE, Greenough WT. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 1992; 12: 110-9.
  • 42 Ivy AS. The effects of NE and 5-HT receptor antagonists on the regulation of BDNF expression during physical activity. Soc Neurosci Abstr 2001; 258: 218.
  • 43 Jiaxu C, Weiyi Y. Influence of acute and chronic treadmill exercise on rat brain POMC gene expression. Med Sci Sports Exerc 2000; 32: 954-7.
  • 44 Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 2001; 58: 498-504.
  • 45 Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M. Neurotrophins and brain insults. Trends Neurosci 1994; 17: 490-6.
  • 46 Liu J, Yeo HC, Övervik-Douki E, Hagen T, Doniger SJ, Chu DW, Brooks GA, Ames BN. Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. J Appl Phyiol 2000; 89: 21-8.
  • 47 Lu B, Chow A. Neurotrophins and hippocampal synaptic transmission and plasticity. J Neurosci Res 1999; 58: 76-87.
  • 48 Markowska AL, Mooney M, Sonntag WE. Insulin-like growth factor-I ameliorates age-related behavioral deficits. Neuroscience 1998; 87: 559-69.
  • 49 Martinsen EW, Hoffart A, Solberg O. Comparing aerobic with nonaerobic forms of exercise in the treatment of clinical depression: a randomized trial. Compr Psychiatry 1989; 30: 324-31.
  • 50 McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 1999; 22: 295-318.
  • 51 Meeusen R. Exercise and brain neurotransmission. Dissertation, Freie Univ. Brüssel. 1996
  • 52 Miyakoda H, Kitamura H, Kinugawa T, Saito M, Kotake H, Mashiba H. Cardiac neurosis: exercise tolerance and the role of sympathetic activitiy. Jpn J Med 1990; 29: 493-9.
  • 53 Neeper SA, Gómez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature 1995; 373: 109.
  • 54 Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 1996; 726: 49-56.
  • 55 Platen P, Gotzmann A, Keizer H, Evertz S, Goltermann S, Sander U. Differences in the exercise-induced changes of serum tryptophan (TRP) and the large neutral-amino acid (LNAA)/TRP-ratio in anorectic and eumenorrheic runners. Med Sci Sports Exerc 1992; 25 (Suppl. 05) S77.
  • 56 Rogers HB, Schroeder T, Secher NH, Mitchell JH. Cerebral blood flow during static exercise in humans. J Appl Physiol 1990; 68: 2358-61.
  • 57 Rogers RL, Meyer JS, Mortel KF. After reaching retirement age physical activity sustains cerebral perfusion and cognition. J Am Geriatr Soc 1990; 38: 123-8.
  • 58 Roland PE, Larsen B, Lassen NA, Skinhoj E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 1980; 43: 118-36.
  • 59 Russo-Neustadt A, Beard RC, Cotman CW. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 1999; 21: 679-82.
  • 60 Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 2000; 101: 305-12.
  • 61 Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP. Physical activity-antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res 2001; 120: 87-95.
  • 62 Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 2000; 23: 639-45.
  • 63 Schmidt D, Krause BJ, Herzog H, Strüder HK, Hautzel H, Klose C, Wouters E, Hollmann W, Müller-Gärtner HW. Influence of memory load on the change of regional cerebral blood flow during verbal working memory in elderly subjects. Neuroimage 1999; 09: S907.
  • 64 Schmidt D, Krause BJ, Herzog H, Strüder HK, Klose C, Wouters E, Hollmann W, Müller-Gärtner HW. Age-dependent changes in activation patterns during encoding and retrieval of visually presented word-pair associates. Neuroimage 1999; 09: 908.
  • 65 Shughrue PJ, Merchenthaler I. Estrogen is more than just a “sex” hormone: novel sites for estrogen action in the hippocampus and cerebral cortex. Front Neuroendocrinol 2000; 21: 95-101.
  • 66 Singh M, Meyer EM, Simpkins JW. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 1995; 136: 2320-4.
  • 67 Sterr A, Müller MM, Elbert T, Rockstroh B, Pantev C, Taub E. Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J Neurosc 1998; 18: 4417-23.
  • 68 Strüder HK, Hollmann W, Platen P, Wöstmann R, Ferrauti A, Weber K. Effect of exercise intensity on free tryptophan to branched-chain amino acids ratio and plasma prolactin during endurance exercise. Can J Appl Physiol 1997; 22: 280-91.
  • 69 Strüder HK, Hollmann W, Platen P, Rost R, Weicker H, Kirchhof O, Weber K. Neuroendocrine system and mental function in sedentary and endurance-trained elderly males. Int J Sports Med 1999; 20: 159-66.
  • 70 Stummer W, Weber K, Tranmer B, Baethmann A, Kempski O. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke 1994; 25: 1862-9.
  • 71 Swaab DF, Fliers E, Hoogendijk WJG, Veltman DJ, Zhou JN. Interaction of prefrontal cortical and hypothalamic systems in the pathogenesis of depression. Prog Brain Res 2000; 126: 369-96.
  • 72 Tokuyama W, Okuno H, Hashimoto T, Xin-Li Y, Miyashita Y. BDNF upregulation during declarative memory formation in monkey inferior temporal cortex. Nat Neurosci 2000; 03: 1134-42.
  • 73 Tong L, Shen H, Perreau VM, Balazs R, Cotman CW. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 2001; 08: 1046-56.
  • 74 van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long term potentiation in mice. Proc Natl Acad Sci USA 1999; 96: 13427-81 (a).
  • 75 van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 02: 266-70 (b).
  • 76 Widenfalk J, Olson L, Thoren P. Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci Res 1999; 34: 125-32.
  • 77 Wouters E. Über den Einfluss eines extremen bzw. eines moderaten körperlichen Trainings auf hämodynamische, metabolische, psychische und kognitive Parameter bei über 65-jährigen Männern. Dissertation Deutsche Sporthochschule, Köln 1999
  • 78 Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K. A prospective study of physical activity and cognitive decline in elderly women. Arch Intern Med 2001; 161: 1703-8.
  • 79 Young D, Lawlor PA, Leone P, Dragunow M, During MJ. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 1999; 05: 448-53.