Nuklearmedizin 2010; 49(S 01): S21-S25
DOI: 10.1055/s-0038-1626527
Übersichtsarbeit
Schattauer GmbH

Gentechnisch modulierte Iodidanreicherung in malignen Tumoren

Iodidenrichement in malignant tumours after gene transfer
U. Haberkorn
1   Abteilung Nuklearmedizin, Universitätsklinikum Heidelberg
2   Klinische Kooperationseinheit Nuklearmedizin, DKFZ Heidelberg
,
V. Askoxylakis
2   Klinische Kooperationseinheit Nuklearmedizin, DKFZ Heidelberg
3   Abteilung Radio-Onkologie Universitätsklinikum Heidelberg
,
A. Markert
1   Abteilung Nuklearmedizin, Universitätsklinikum Heidelberg
2   Klinische Kooperationseinheit Nuklearmedizin, DKFZ Heidelberg
,
A. Altmann
1   Abteilung Nuklearmedizin, Universitätsklinikum Heidelberg
2   Klinische Kooperationseinheit Nuklearmedizin, DKFZ Heidelberg
› Author Affiliations
Further Information

Publication History

Eingegangen: 14 September 2010

angenommen in revidierter Form: 17 September 2010

Publication Date:
24 January 2018 (online)

Summary

After the cloning of the gene encoding the sodium-iodide symporter several trials were made to develop a radioiodine treatment for multiple tumour entities based on NIS gene transfer. These studies revealed in vitro as well as in vivo a tremendous enhancement of iodide accumulation, which was followed by a rapid efflux. Therapy effects were observed in vitro by clonogenic assays and in vivo by growth inhibition of the treated tumours. However, the interpretation of these results were largely different. Problems of radioiodine therapy after NIS transfer are low efficiency of gene transfer and the short exposure time for the tumours caused by the rapid efflux. Trials to enhance therapeutic efficiency by co-transfer of the gene encoding thyroperoxidase failed due to the low enzyme activity.

Zusammenfassung

Die Klonierung des Gens für den Natrium-Iodid-Symporter führte zu Versuchen, mittels Transfer dieses Gens eine biotechnologisch unterstützte Radioiodtherapie bei einer Vielzahl von Tumoren zu erreichen. Diese ergaben in vitro und in vivo eine stark erhöhte Iodidanreicherung, die jedoch von einem schnellen Efflux gefolgt war. Therapieeffekte wurden in vitro mittels klonogenen Assays und in vivo über eine Hemmung des Tumorwachstums beobachtet. Bezüglich der Interpretation dieser Ergebnisse bestehen divergierende Ansichten. Probleme der Radioiodtherapie nach NIS-Transfer sind sicherlich die mangelhafte Effizienz des Gentransfers und die durch den schnellen Efflux kurze Expositionsdauer der Tumoren. Versuche, die Therapieeffizienz durch Kotransfer des Gens für die Schilddrüsenperoxidase zu steigern, scheiterten bisher an der geringen Enzymaktivität.

 
  • Literatur

  • 1 Arturi F, Russo D, Schlumberger M. et al. Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab 1998; 83: 2493-6249.
  • 2 Berman M, Hoff E, Barandes M. Iodine kinetics in man: a model. J Clin Endocrinol Metab 1968; 28: 1-14.
  • 3 Boland A, Ricard M, Opolon P. et al. Adenovirusmediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000; 60: 3484-3492.
  • 4 Carlin S, Cunningham SH, Boyd M. et al. Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two-and three-dimensional models. Cancer Gene Ther 2000; 7: 1529-1536.
  • 5 Chen L, Altmann A, Mier W. et al. Radioiodine therapy of hepatoma using targeted transfer of the human sodium/iodide symporter gene. J Nucl Med 2006; 47: 854-862.
  • 6 Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG. Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/ iodide symporter (NIS). Nucl Med Biol 2002; 29: 13-18.
  • 7 Gershengorn MC, Izumi M, Robbins J. Use of lithium as an adjunct to radioiodine therapy of thyroid carcinoma. J Clin Endocrinol Metab 1976; 42: 105-111.
  • 8 Giraud A, Franc JL, Long Y, Ruf J. Effects of deglycosylation of human thyroperoxidase on its enzymatic activity and immunoreactivity. J Endocrinol 1992; 132: 317-323.
  • 9 Giraud A, Siffroi S, Lanet J, Franc JL. Binding and internalization of thyroglobulin: selectivity, pH dependence, and lack of tissue specificity. Endocrinology 1997; 138: 2325-2332.
  • 10 Guo J, McLachlan SM, Hutchinson S, Rapoport B. The greater glycan content of recombinant human thyroid peroxidase of mammalian than of insect cell origin facilitates purification to homogeneity of enzymatically protein remaining soluble at high concentration. Endocrinology 1998; 139: 999-1005.
  • 11 Haberkorn U, Henze M, Altmann A. et al. Transfer of the human sodium iodide symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 2001; 42: 317-325.
  • 12 Haberkorn U, Kinscherf R, Kissel M. et al. Enhanced iodide transport after transfer of the human sodium iodide symporter gene is associated with lack of retention and low absorbed dose. Gene Ther 2003; 10: 774-780.
  • 13 Haberkorn U, Altmann A, Jiang S. et al. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene. Eur J Nucl Med 2001; 28: 633-638.
  • 14 Haberkorn U, Beuter P, Kübler W. et al. Iodide kinetics and dosimetry in vivo after transfer of the human sodium iodide symporter gene in rat thyroid carcinoma cells. J Nucl Med 2004; 45: 827-833.
  • 15 Hidaka Y, Hayashi Y, Fisfalen ME. et al. Expression of thyroid peroxidase in EBV-transformed B cell lines using adenovirus. Thyroid 1996; 6: 23-28.
  • 16 Hingorani M, White CL, Zaidi S. et al. Therapeutic effect of sodium iodide symporter gene therapy combined with external beam radiotherapy and targeted drugs that inhibit DNA repair. Mol Ther 2010; 18: 1599-1605.
  • 17 Huang M, Batra RK, Kogai T. et al. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 2001; 8: 612-618.
  • 18 Kaufman KD, Filetti S, Seto P, Rapoport B. Recombinant human thyroid peroxidase generated in eukaryotic cells: a source of specific antigen for the immunological assay of antimicrosomal antibodies in the sera of patients with autoimmune thyroid disease. J Clin Endocrinol Metab 1990; 70: 724-728.
  • 19 Kimura S, Kotani T, Ohtaki S, Aoyama T. CDNA-directed expression of human thyroid peroxidase. FEBS letters 1989; 250: 377-380.
  • 20 Koong S, Reynolds JC, Movius EG. et al. Lithium as a potential adjuvant to 131I therapy of metastatic, well differentiated thyroid carcinoma. J Clin Endocrinol Metab 1999; 84: 912-916.
  • 21 Lazarus JH. The effects of lithium therapy on thyroid and thyrotropin-releasing hormone. Thyroid 1998; 8: 909-913.
  • 22 Mandell RB, Mandell LZ, Link CJ. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 1999; 59: 661-668.
  • 23 Maxon HR, Thomas SR, Herzberg VS. et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 1983; 309: 937-941.
  • 24 Nakamoto Y, Saga T, Misaki T. et al. Establishment and characterization of a breast cancer cell line expressing Na+/Isymporters for radioiodide concentrator gene therapy. J Nucl Med 2000; 41: 1898-1904.
  • 25 Ohtaki S, Nakagawa H, Nakamura M, Kotani T. Thyroid peroxidase: experimental and clinical integration. Endocrine J 1996; 43: 1-14.
  • 26 Ohtaki S, Kotani T, Nakamura Y. Characterization of human thyroid peroxidase purified by monoclonal antibody-assisted chromatography. J Clin Endocrinol Metab 1986; 63: 570-576.
  • 27 Petrich T, Helmeke HJ, Meyer GJ. et al. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium iodide symporter. Eur J Nucl Med 2002; 29: 842-854.
  • 28 Ryu KY, Senokozlieff ME, Smanik PA. et al. Development of reverse transcription-competitive polymerase chain reaction method to quantitate the expression levels of human sodium iodide symporter. Thyroid 1999; 9: 405-409.
  • 29 Sedvall G, Jonsson B, Petterson U, Levin K. Effects of lithium salts on plasma protein bound iodine and uptake of 131I in thyroid gland of man and rat. Life Sci 1968; 7: 1257-1264.
  • 30 Shimura H, Haraguchi K, Miyazaki A. et al. Iodide uptake and experimental 131J therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/Isymporter gene. Endocrinology 1997; 138: 4493-4496.
  • 31 Sieger S, Jiang S, Schönsiegel F. et al. Tumour specific activation of the sodium/iodide symporter gene under control of the glucose transporter gene 1 promoter (GTI-1.3). Eur J Nucl Med 2003; 30: 748-756.
  • 32 Smit JW, Shroder van der Elst JP, Karperien M. et al. Reestablishment of in vitro and in vivo iodide uptake by transfection of the human sodium iodide symporter (hNIS) in a hNIS defective human thyroid carcinoma cell line. Thyroid 2000; 10: 939-943.
  • 33 Smit JWA, Shroder van der Elst JP, Karperien M. et al. Iodide kinetics and experimental 131I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab 2002; 87: 1247-1253.
  • 34 Spitzweg C, O'Connor MK, Bergert ER. et al. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 2000; 60: 6526-6530.
  • 35 Spitzweg C, Zhang S, Bergert ER. et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 1999; 59: 2136-2141.
  • 36 Spitzweg C, Dietz AB, O'Connor MK. et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 2001; 8: 1524-1531.
  • 37 Taurog A, Dorris ML, Yokoyama N, Slaughter C. Purification and characterization of a large , tryptic fragment of human thyroid peroxidase with high catalytic activity. Arch Biochem Biophys 1990; 278: 333-341.
  • 38 Temple R, Berman M, Robbins J, Wolff J. The use of lithium in the treatment of thyrotoxicosis. J Clin Invest 1972; 51: 2746-2756.
  • 39 Urabe M, Hershman JM, Pang XP. et al. Effect of lithium on function and growth of thyroid cells in vitro. Endocrinology 1991; 129: 807-814.
  • 40 Wendisch M, Freudenberg R, Drechsel J. et al. 99mTc reduces clonogenic survival after intracellular uptake in NIS positive cells in vitro more than 131I. Nuklearmedizin 2010; 49: 154-160.