Methods Inf Med 2002; 41(04): 337-341
DOI: 10.1055/s-0038-1634391
Original article
Schattauer GmbH

Classification of EEG Mental Patterns by Using Two Scalp Electrodes and Mahalanobis Distance-Based Classifiers

Authors

  • F. Cincotti

    1   IRCCS, Fondazione Santa Lucia, Rome, Italy
  • D. Mattia

    1   IRCCS, Fondazione Santa Lucia, Rome, Italy
  • C. Babiloni

    2   Dip. Fisiologia umana e Farmacologia, Università “La Sapienza”, Rome, Italy
  • F. Carducci

    2   Dip. Fisiologia umana e Farmacologia, Università “La Sapienza”, Rome, Italy
  • L. Bianchi

    3   Dip. Neuroscienze, Università “Tor Vergata”, Rome, Italy
  • del R. J. Millán

    4   ISIS, Joint Research Center of the EC, Ispra (VA), Italy
  • J. Mouriño

    4   ISIS, Joint Research Center of the EC, Ispra (VA), Italy
  • S. Salinari

    5   Dipartimento Informatica e Sistemistica, Università “La Sapienza”, Rome, Italy
  • M. G. Marciani

    1   IRCCS, Fondazione Santa Lucia, Rome, Italy
    3   Dip. Neuroscienze, Università “Tor Vergata”, Rome, Italy
  • F. Babiloni

    2   Dip. Fisiologia umana e Farmacologia, Università “La Sapienza”, Rome, Italy
Further Information

Publication History

Received 13 August 2001

Accepted 30 January 2002

Publication Date:
07 February 2018 (online)

Preview

Summary

Objectives: In this paper, we explored the use of quadratic classifiers based on Mahalanobis distance to detect mental EEG patterns from a reduced set of scalp recording electrodes.

Methods: Electrodes are placed in scalp centro-parietal zones (C3, P3, C4 and P4 positions of the international 10-20 system). A Mahalanobis distance classifier based on the use of full covariance matrix was used.

Results: The quadratic classifier was able to detect EEG activity related to imagination of movement with an affordable accuracy (97% correct classification, on average) by using only C3 and C4 electrodes.

Conclusions: Such a result is interesting for the use of Mahalanobis-based classifiers in the brain computer interface area.