Methods Inf Med 2002; 41(04): 245-260
DOI: 10.1055/s-0038-1634485
Original article
Schattauer GmbH

Imaging and the Human Brain Project: A Review[*]

J. F. Brinkley
1   Structural Informatics Group, Department of Biological Structure, University of Washington, Seattle, USA
,
C. Rosse
1   Structural Informatics Group, Department of Biological Structure, University of Washington, Seattle, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
07 February 2018 (online)

Summary

Objectives: Survey current work primarily funded by the US Human Brain Project (HBP) that involves substantial use of images. Organize this work around a framework based on the physical organization of the body.

Methods: Pointers to individual research efforts were obtained through the HBP home page as well as personal contacts from HBP annual meetings. References from these sources were followed to find closely related work. The individual research efforts were then studied and characterized.

Results: The subject of the review is the intersection of neuroinformatics (information about the brain), imaging informatics (information about images), and structural informatics (information about the physical structure of the body). Of the 30 funded projects currently listed on the HBP web site, at least 22 make heavy use of images. These projects are described in terms of broad categories of structural imaging, functional imaging, and image-based brain information systems.

Conclusions: Understanding the most complex entity known (the brain) gives rise to many interesting and difficult problems in informatics and computer science. Although much progress has been made by HBP and other neuroinformatics researchers, a great many problems remain that will require substantial informatics research efforts. Thus, the HPB can and should be seen as an excellent driving application area for biomedical informatics research.

* Updated version of an invited review paper that appeared under the title “Imaging informatics and the Human Brain Project: the role of structure”. In: Haux R, Kulikowski C, eds. (2002). IMIA Yearbook of Medical Informatics 2002: Medical Imaging Informatics, pp. 131-48, Stuttgart: Schattauer.


 
  • References

  • 1 Koslow SH, Huerta MF. editors. Neuroinformatics: an overview of the Human Brain Project. Mahwah, New Jersey: Lawrence Erlbaum; 1997
  • 2 Chicurel M. Databasing the brain. Nature 2000; 406: 822-5.
  • 3 Kahn J. Let’s make your head interactive. Wired. 2001 August: 107-15.
  • 4 Pechura C, Martin J. Mapping the brain and its functions: integrating enabling technologies into neuroscience research. Institute of Medicine Pub 91-08: National Academy Press; 1991
  • 5 Heurta M, Koslow S. Neuroinformatics: opportunities across disciplinary and national borders. Neuroimage 1996; 4: S4-S6.
  • 6 Rosse C, Mejino JL, Modayur BR, Jakobovits RM, Hinshaw KP, Brinkley JF. Motivation and organizational principles for anatomical knowledge representation: the Digital Anatomist symbolic knowledge base. J Am Med Inform Assoc 1998; 5 (Suppl. 01) 17-40 http://sig.biostr.washington.edu/publications/online/KBpaper.pdf.
  • 7 Brinkley JF. Structural informatics and its applications in medicine and biology. Academic Medicine 1991; 66 (Suppl. 10) 589-91.
  • 8 Kulikowski CA. Medical imaging informatics: challenges of definition and integration. J Am Med Inform Assoc 1997; 4 (Suppl. 03) 252-3.
  • 9 Ambrogi L. Manual of Histologic and Special Staining Techniques. 2nd ed. New York: Mc-Graw-Hill; 1960
  • 10 Peters A, Palay S, Webster H. The Fine Structure of the Nervous System: Neurons and their Supporting Cells. 3rd ed. New York: Oxford Press; 1991
  • 11 Crusio WE, Gerlai RT. editors. Handbook of molecular-genetic techniques for brain and behavior research. Amsterdam; New York: Elsevier; 1999
  • 12 Zimmerman RA, Gibby WA, Carmody RF. editors. Neuroimaging: clinical and physical principles. New York: Springer; 2000
  • 13 Jacobs RE, Ahrens ET, Dickenson ME, Laidlaw D. Towards a microMRI atlas of mouse development. Comput Med Imaging Graph 1999; 23 (Suppl. 01) 15-24 http://waggle.gg.caltech.edu/hbp/index.html.
  • 14 Wilson T. Confocal Microscopy. San Diego: Academic Press Ltd.; 1990
  • 15 Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T. Electron tomography of neuronal mitochondria: Three-dimensional structure and organization of cristae and menbrane contacts. J Structural Biology 1997; 119 (Suppl. 03) 260-72.
  • 16 Prothero JS, Prothero JW. Three-dimensional reconstruction from serial sections IV. The reassembly problem. Computers and Biomedical Research 1986; 19 (Suppl. 04) 361-73.
  • 17 Spitzer VM, Whitlock DG. The Visible Human Dataset: the anatomical platform for human simulation. Anat Rec 1998; 253 (Suppl. 02) 49-57.
  • 18 Fiala JC, Harris KM. Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Assoc 2001; 8 (Suppl. 01) 1-16.
  • 19 Soto GE, Young SJ, MArtone ME, Deerinick TJ, Lamont SL, Carragher BO, Hamma K, Ellisman MH. Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage 1994; 1: 230-43 http://ncmir.ucsd.edu abstracts.html#Neuroimage_1.
  • 20 Agrawal M, Harwood D, Duraiswami R, Davis LS, Luther PW. Three-dimensional ultrastructure from transmission electron micropscope tilt series. In: Proceedings, Second Indian Conference on Vision, Graphics and Image Processing. Bangaore, India: 2000. www.umiacs.umd.edu/~mla/tem/icvgipfinal.pdf.
  • 21 Modayur B, Prothero J, Ojemann G, Maravilla K, Brinkley JF. Visualization-based mapping of language function in the brain. Neuroimage 1997; 6: 245-58.
  • 22 Hinshaw KP, Poliakov AV, Martin RF, Moore EB, Shapiro LG, Brinkley JF. Shape-based cortical surface segmentation for visualization brain mapping. Neuroimage 2002; 16 (Suppl. 02) 295-316 http://sig.biostr.washington.edu/publications/online/neuroimage2002.
  • 23 Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space. J Comp Assisted Tomogr 1994; 18 (Suppl. 02) 192-205.
  • 24 Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images. J Comp Assisted Tomogr 1992; 16: 620-33.
  • 25 Woods RP, Mazziotta JC, Cherry SR. MRIPET registration with automated algorithm. J Comp Assisted Tomogr 1993; 17: 536-46.
  • 26 Ashburner J, Friston KJ. Multimodal image coregistration and partitioning – a unified framework. Neuroimage 1997; 6 (Suppl. 03) 209-17.
  • 27 MacDonald D. Register: McConnel Brain Imaging Center, Montreal Neurological Institute;. 1993 www.bic.mni.mcgill.ca/software/.
  • 28 Lichtenbelt B, Crane R, Naqvi S. Introduction to Volume Rendering. Upper Saddle River, N.J.: Prentice Hall; 1998
  • 29 Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999; 9 (Suppl. 02) 179-94.
  • 30 Collins DL, Holmes DJ, Peters TM, Evans AC. Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 1995; 3: 190-208.
  • 31 MacDonald D, Kabani N, Avis D, Evans AC. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuro-image 2000; 12 (Suppl. 03) 340-56.
  • 32 Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH. An integrated software suite for surface-based analysis of cerebral cortex. J Am Med Ass 2001; 8 (Suppl. 05) 443-59 http://stp.wustl.edu.
  • 33 Brain Innovation B.V. BrainVoyager. www.BrainVoyager.de 2001
  • 34 Subramaniam B, Hennessey JG, Rubin MA, Beach LS, Reiss AL. Software and methods for quantitative imaging in neuroscience: the Kennedy Krieger Institute Human Brain Project. In: Koslow SH, Huerta MF. editors. Neuroinformatics: an overview of the Human Brain Project. Mahwah, New Jersey: Lawrence Erlbaum; 1997. p. 335-60. www.cap. stanford.edu/research/neuroimaging/projects/hbp.html.
  • 35 Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Stastical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189-210 www.fil.ion.ucl.ac.uk/spm.
  • 36 FMRIDB Image Analysis Group. FSL – The FMRIB Software Libarary. www.fmrib.ox.ac.uk/fsl/index.html 2001
  • 37 Kennedy D. Internet Brain Segmentation Repository. http://neuro-www.mgh.harvard.edu/ cma/ibsr; 2001
  • 38 Prothero JS, Prothero JW. Three-dimensional reconstruction from serial sections: I. A portable microcomputer-based software package in Fortran. Comp Biomed Res 1982; 15: 598-604.
  • 39 Foley JD. Computer graphics: Principles and Practice. Reading, Mass.: Addison-Wesley; 2001
  • 40 Shapiro LG, Stockman GC. Computer Vision. Upper Saddle River, N.J.: Prentice Hall; 2001
  • 41 Choi HS, Haynor DR, Kim Y. Partial volume tissue classification of multichannel magnetic resonance images – a mixel model. IEEE Trans. Med. Imaging 1991; 10 (Suppl. 03) 395-407.
  • 42 Zijdenbos AP, Evans AC, Riahi F, Sled J, Chui J, Kollokian V. Automatic quantification of multiple sclerosis lesion volume using stereotactic space. In: Proc. 4th Int. Conf. on Visualization in Biomedical Computing. Hamburg; 1996. p. 439-48.
  • 43 Davatzikos C, Bryan RN. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Trans. Medical Imaging 1996; 15 (Suppl. 06) 785-95.
  • 44 Haralick RM. Mathematical Morphology. University of Washington; 1988
  • 45 Sandor S, Leahy R. Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans. Med. Imaging 1997; 16 (Suppl. 01) 41-54.
  • 46 Lorensen WE, Cline HE. Marching cubes: a high resolution 3-D surface construction algorithm. ACM Computer Graphics 1987; 21 (Suppl. 04) 163-9.
  • 47 Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Interl J Comp Vision 1987; 1 (Suppl. 04) 321-31.
  • 48 Brinkley JF. Hierarchical geometric constraint networks as a representation for spatial structural knowledge. In: Proceedings, 16th Annual Symposium on Comp Applic. Med Care; 1992. p. 140-4.
  • 49 Brinkley JF. Knowledge-driven ultrasonic three-dimensional organ modelling. PAMI 1985; PAMI-7 (Suppl. 04) 431-41.
  • 50 Brinkley JF. A flexible, generic model for anatomic shape: application to interactive two-dimensional medical image segmentation and matching. Computers and Biomedical Research 1993; 26: 121-42.
  • 51 Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9 (Suppl. 02) 195-207.
  • 52 Wellcome Department of Cognitive Neurology. Statistical Parametric Mapping. www.fil.ion.ucl.ac.uk/spm 2001
  • 53 Sensor Systems Inc. MedEx. http://medx.sensor.com/products/medx/index.html 2001
  • 54 Brinkley JF, Wong BA, Hinshaw KP, Rosse C. Design of an anatomy information system. Comp Graphics Applic 1999; 19 (Suppl. 03) 38-48.
  • 55 Wong BA, Rosse C, Brinkley JF. Semi-automatic scene generation using the Digital Anatomist Foundational Model. In: Proceedings, American Medical Informatics Association Fall Symposium. Washington, DC: 1999. p. 637-41.
  • 56 Rosse C, Tuttle MS. Explaining the brain to a computer. In: Human Brain Project Annual Meeting. 2001 www.nimh.nih.gov/neuroinformatics/rosse2001.cfm.
  • 57 Gardner D, Abato M, Knuth KH, DeBellis R, Gardner EP. A functional ontology for neuroinformatics. In: Human Brain Project Annual Meeting. 2001 www.nimh.nih.gov/neuroinformatics/gardner2001.cfm.
  • 58 International Anatomical Nomenclature Committee. Nomina Anatomica. 6th ed. Edinburgh: Churchill Livingstone; 1989
  • 59 Federative Committee on Anatomical Terminology. Terminologia Anatomica. Stuttgart: Thieme; 1998
  • 60 National Library of Medicine. Medical Subject Headings – Annotated Alphabetic List. Bethesda, MD: U.S. Department of Health and Human Services, Public Health Service; 1999
  • 61 Spackman KA, Campbell KE, Cote RA. SNOMED-RT: A reference terminology for health care. In: Masys DR. editor. Proceedings, AMIA Annual Fall Symposium. Philadelphia: Hanley and Belfus; 1997. p. 640-4.
  • 62 Schultz EB, Price C, Brown PJB. Symbolic anatomic knowledge representation in the Read Codes Version 3: Structure and application. J Am Med Inform Assoc 1997; 4: 38-48.
  • 63 Rector AL, Nowlan WA, Glowinski A. Goals for concept representation in the GALEN project. In: Safran C. editor. Proceedings of the 17th Annual Symposium on Computer Applications in Medical Care (SCAMC 93). New York: McGraw Hill; 1993. p. 414-8.
  • 64 Bowden DM, Martin RF. Neuronames brain hierarchy. Neuroimage 1995; 2: 63-83.
  • 65 Lindberg DAB, Humphreys BL, McCray AT. The unified medical language system. Methods Inf Med 1993; 32 (Suppl. 04) 281-91.
  • 66 Paxinos G, Watson C. The rat brain in stereo-taxic coordinates. San Diego: Acedemic Press; 1986
  • 67 Bloom FE, Young WG. Brain Browser. New York: Academic Press; 1993
  • 68 Swanson LW. Brain maps: structure of the rat brain. Amsterdam; New York: Elsevier; 1992
  • 69 Franklin KBJ, Paxinos G. The mouse brain in stereotactic coordinates. San Diego: Academic Press; 1997
  • 70 Rosse C. Terminologia Anatomica; considered from the perspective of next-generation knowledge sources. Clinical Anatomy 2000; 14: 120-33 http://sig.biostr.washington.edu/publications/online/CRTAnat.pdf.
  • 71 Rosse C, Shapiro LG, Brinkley JF. The Digital Anatomist foundational model: principles for defining and structuring its concept domain. In: Proceedings, American Medical Informatics Association Fall Symposium. Orlando, Florida: 1998. p. 820-4. http://sig.biostr.washington.edu/publications/online/D005094.pdf.
  • 72 Musen MA. Domain ontologies in software engineering: use of Protege with the EON architecture. Methods Inf Med 1998; 37 4-5 540-50.
  • 73 Mejino JLV, Noy NF, Musen MA, Brinkley JF, Rosse C. Representation of structural relationships in the foundational model of anatomy. In: Proceedings, AMIA Fall Symposium. Washington, DC: 2001. p. 973.
  • 74 Martin RF, Mejino JLV, Bowden DM, Brinkley JF, Rosse C. Foundational model of neuro-anatomy: implications for the Human Brain Project. In: Proc AMIA Annu Fall Symp. Washington, DC: 2001. p. 438-42.
  • 75 Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R, Gardner EP. Common data model for neuroscience data and data model exchange. J Am Med Ass 2001; 8 (Suppl. 01) 17-33.
  • 76 Sundsten JW, Conley DM, Ratiu P, Mulligan KA, Rosse C. Digital Anatomist web-based interactive atlases. http://www9.biostr.washington.edu/da.html 2000
  • 77 Brinkley JF, Bradley SW, Sundsten JW, Rosse C. The Digital Anatomist information system and its use in the generation and delivery of Web-based anatomy atlases. Comp Biomed Res 1997; 30: 472-503.
  • 78 Hohne KH, Pflesser B, Riemer M, Schiemann T, Schubert R, Tiede U. A new representation of knowledge concerning human anatomy and function. Nature Medicine 1995; 1 (Suppl. 06) 506-10.
  • 79 Hohne K, Bomans M, Pommert A, Riemer M, Schiers C, Tiede U, Wiebecke G. 3-D visualization of tomographic volume data using the generalized voxel model. Visual Comput 1990; 6 (Suppl. 01) 28-36.
  • 80 Stensaas SS, Millhouse OE. Atlases of the Brain. http://medstat.med.utah.edu/kw/brain/atlas/credits.htm 2001
  • 81 Johnson KA, Becker JA. The Whole Brain Atlas. www.med.harvard.edu/AANLIB/home.html 2001
  • 82 Swanson LW. Brain Maps: Structure of the Rat Brain. 2nd ed. New York: Elsevier Science; 1999
  • 83 Martin RF, Bowden DM. Primate Brain Maps: Structure of the Macaque Brain. New York: Elsevier Science; 2001
  • 84 Fougerousse F, Bullen P, Herasse M, Lindsay S, Richard I, Wilson D, Suel L, Durand M, Robson S, Abitbol M, Beckmann JS, Strachan T. Human-mouse differences in the embryonic expression of developmental control genes and disease genes. Human Molecular Genetics 2000; 9 (Suppl. 02) 165-73.
  • 85 Rosen GD, Williams AG, Capra JA, Connolly MT, Cruz B, Lu L, Airey DC, Kulkarni K, Williams RW. The Mouse Brain Library. http//www.mbl.org. In: Int. Mouse Genome Conference. 14; 2000. p. 166. www.nervenet.org/papers/MBLabst2000.html.
  • 86 Toga AW, Ambach KL, Schluender S. High-resolution anatomy from in situ human brain. Neuroimage 1994; 1 (Suppl. 04) 334-44.
  • 87 Toga AW, Santori EM, Hazani R, Ambach K. A 3-D digital map of rat brain. Brain Res Bullet 1995; 38 (Suppl. 01) 77-85.
  • 88 Toga AW. UCLA Laboratory for Neuro Imaging (LONI). www.loni.ucla.edu 2001
  • 89 Dhenain M, Ruffins SW, Jacobs RE. Three-dimensional digital mouse atlas using high-resolution MRI. Dev. Biol. 2001; 232 (Suppl. 02) 458-70 http://mouseatlas.caltech.edu.
  • 90 Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers; 1988
  • 91 Van Essen DC, Drury HA. Structural and functional analysis of human cerebral cortex using a surface-basec atlas. J Neuroscience 1997; 17 (Suppl. 18) 7079-102.
  • 92 Schaltenbrand G, Warren W. Atlas for Stereo-taxy of the Human Brain. Stuttgart: Thieme; 1977
  • 93 Drury HA, Van Essen DC. Analysis of functional specialization in human cerebral cortex using the visible man surface based atlas. Hum Brain Mapp 1997; 5: 233-7.
  • 94 Hohne KH, Bomans M, Riemer M, Schubert R, Tiede U, Lierse W. A volume-based anatomical atlas. IEEE Comput Graph Applic. 1992: 72-8.
  • 95 Caviness VS, Meyer J, Makris N, Kennedy DN. MRI-based topographic parcellation of human neocortex: an anatomically specified method with estimate of reliability. J Cognit Neuroscience 1996; 8 (Suppl. 06) 566-87.
  • 96 Toga AW, Thompson PW. Maps of the brain. Anatomical Record (New Anat.) 2001; 265: 37-53.
  • 97 Christensen GE, Miller MI, Vannier MW. Individualizing neuroanatomical atlases using a massively parallel computer. IEEE Comput 1996; 29 (Suppl. 01) 32-8.
  • 98 Kikinis R, Shenton ME, Iosifescu DV, McCarley RW, Saiviroonporn P, Hokama HH, Robatino A, Metcalf D, Wible CG, Portas CM, Donnino R, Jolesz F. A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans. Visualizat Comput Graphics 1996; 2 (Suppl. 03) 232-41.
  • 99 Gee JC, Reivich M, Bajcsy R. Elastically deforming 3D atlas to match anatomical brain images. J Comp Assist Tomogr 1993; 17 (Suppl. 02) 225-36.
  • 100 Kjems U, Strother SC, Anderson JR, Law I, Hansen LK. Enhancing the multivariate signal of 15O water PET studies with a new nonlinear neuroanatomical registration algorithm. IEEE Trans Med Imaging 1999; 18: 301-19 http://hendrix.imm.dtu.dk/software/kjemswarp/kjemswarp.html.
  • 101 Bookstein FL, Green WDK. The Edgewarp 3D Browser. http://vhp.med.umich.edu/edge-warpss.html 2001
  • 102 Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal Mach Intell 1989; 11 (Suppl. 06) 567-85.
  • 103 Thompson P, Toga AW. A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 1996; 15 (Suppl. 04) 402-17.
  • 104 Davatzikos C. Spatial transformation and registration of brain images using elastically deformable models. Comput Vision Image Understanding 1997; 66 (Suppl. 02) 207-22 http://ditzel.rad.jhu.edu/papers/cviu97.pdf.
  • 105 Van Essen DC, Drury HA, Joshi S, Miller MI. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Nat Acad Sciences 1998; 95: 788-95.
  • 106 Hurdal MK, Stephenson K, Bowers P, Sumners DW, Rottenberg DA. Coordinate systems for conformal cerebellar flat maps. Neuro-image 2000; 11 (Suppl. 05) S467 www.pet.med.va.gov:8080/papers/abstracts_posters_HBM2000/mhurdal_HBM2000.html.
  • 107 Mazziotta J, Toga A, Evans A, Fox P. et al. A four-dimensional probabilistic atlas of the human brain. J Am Med Ass 2001; 8 (Suppl. 05) 401-30.
  • 108 Evans AC, Collins DL, Neelin P, MacDonald D, Kamber M, Marrett TS. Three-dimensional correlative imaging: applications in human brain mapping. In: Thatcher RW, Hallett M, Zeffiro T, John ER, Heurta M. editors. Functional Neuroimaging: technical foundations. San Diego: Academic Press; 1994. p. 145-62.
  • 109 Martin RF, Poliakov AV, Mulligan KA, Corina DP, Ojemann GA, Brinkley JF. Multi-patient mapping of language sites on 3-D brain models. Neuroimage (Human Brain Mapping Annual Meeting, June 12-16) 2000; 11 (Suppl. 05) S534.
  • 110 Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000; 10 (Suppl. 03) 120-31 http://ric.uthscsa.edu/projects/talairachdaemon.html.
  • 111 Thompson PM, Toga AW. Detection, visualization and animation of abnormal anatomic structure with a deformable probalistic brain atlas based on random vector field transformations. Med Image Anal 1997; 1: 271-94.
  • 112 Christensen GE, Rabbitt RD, Miller MI. Deformable templates using large deformation kinematics. IEEE Trans. Image Processing 1996; 5 (Suppl. 10) 1435-47.
  • 113 Dacey D. Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res 1999; 18 (Suppl. 06) 737-63.
  • 114 Ono MS, Kubik S, Abernathy CD. Atlas of the Cerebral Sulci. New York: Thieme Medical Publishers; 1990
  • 115 Bookstein FL. Biometrics and brain maps: the promise of the morphometric synthesis. In: Koslow SH, Huerta MF. editors. Neuroinformatics:An Overview of the Human Brain Project. Malwah, New Jersey: Lawrence Erlbaum; 1997. p. 203-54.
  • 116 Ascioli GA. Progress and perspectives in computational neuroanatomy. Anatomical Record (New Anat.) 1999; 257 (Suppl. 06) 195-207 www.krasnow.gmu.edu/ascoli/CNG/TN A/index.htm.
  • 117 Toga AW. Brain Atlases. www.loni.ucla.edu/Research_Loni/atlases/index.html 2001
  • 118 Weibel WR. Stereological Methods. New York: Academic Press; 1979
  • 119 DeQuardo JR, Keshavan MS, Bookstein FL, Bagwell WW, Green WDK, Sweeney JA, Haas GL, Tandon R, Schooler NR, Pettegrew JW. Landmark-based morphometric analysis of first-episode schizophrenia. Biological Psychiatry 1999; 45 (Suppl. 10) 1321-8.
  • 120 Thompson PM, Mega MS, Toga AW. Disease-specific brain atlases. In: Mazziotta JC, Toga AW. editors. Brain Mapping III: The Disorders. New York: Academic Press; 2001. www.loni.ucla.edu/~thompson/PDF/Dis/ChptWeb.pdf.
  • 121 Organization for Human Brain Mapping. Annual Conference on Human Brain Mapping. Brighton, United Kingdom;: 2001. www.academicpress.com/www/journal/hbm2001.
  • 122 Toga AW, Frackowiak RSJ, Mazziotta JC. editors. Neuroimage: A Journal of Brain Function. New York: Academic Press; 2001
  • 123 Fox PT. editor. Human Brain Mapping. New York: John Wiley & Sons; 2001
  • 124 Heiss WD, Phelps ME. editors. Positron emission tomography of the brain. Berlin; New York: Springer-Verlag; 1983
  • 125 Aine CJ. A conceptual overview and critique of functional neuroimaging techniques in humans I. MRI/fMRI and PET. Critical Reviews in Neurobiology 1995; 9: 229-309.
  • 126 Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anatomical Record (New Anat.) 2001; 265 (Suppl. 02) 54-84.
  • 127 Corina DP, Steury K, Poliakov AV, Martin RF, Mulligan KA, Maravilla K, Lettich E, Brinkley JF, Inuoe K, Ojemann G. A comparison of language function derived from cortical stimulation mapping and fMRI: data from object naming. Journal article, submitted. 2001
  • 128 Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC. editors. Human Brain Function. New York: Academic Press; 1997
  • 129 Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comp Biomed Res 1996; 29: 162-73 http://afni.nimh.nih.gov/afni/index.shtml.
  • 130 Hansen LK, Nielsen FA, Toft P, Liptrot MG, Goutte C, Strother SC, Lange N, Gade A, Rottenberg DA, Paulson OB. Lyngby – modeler’s Matlab toolbox for spatio-temporal analysis of functional neuroimages. Neuro-image 1999; 9 (Suppl. 06) S241 www.pet.med.va.gov:8080/distrib/lyngby.html.
  • 131 Cohen JD. FisWidgets. http://neurocog.lrdc.pitt.edu/fiswidgets ; 2001
  • 132 Kimborg DY, Aguirre GK. A flexible architecture for neuroimaging data analysis and presentation. www.nimh.nih.gov/neuroinformatics/kimberg.cfm ; 2002
  • 133 Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurgery 1989; 71: 316-26.
  • 134 George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitz HA, Wood CC, Lewine JD, Sanders JA, Belliveau JW. Mapping function in human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin Neurophysiol 1995; 12 (Suppl. 05) 406-31.
  • 135 Poliakov AV, Albright E, Corina D, Ojemann G, Martin RF, Brinkley JF. Server-based approach to web visualization of integrated 3-D medical image data. In: Proc. AMIA Fall Symposium; 2001. p. 533-7. http://quad.biostr.washington.edu/~andrew/cgi-bin/Brain_Browser.cgi?patient=P54.
  • 136 Hurdal MK. A demonstration of cortical flat mapping. www.pet.med.va.gov:8080/incweb/circlepack/ ; 2001
  • 137 Drury H, West B, Van Essen D. CARET daemon. http://stp.wustl.edu/CARETdaemon/CARETdaemon.html ; 1997
  • 138 Sereno MI. Webcortex:Web interface to cortical surface database. http://cogsci.ucsd.edu/~sereno/webcortex.html ; 2001
  • 139 Herskovits EH. BRAID: Brain imaging database. http://braid.rad.jhu.edu ; 2001
  • 140 Hadida-Hassan M, Young SJ, Peltier ST, Wong M, Lamont S, Ellisman MH. Web-based tele-microscopy. J. Structural Biology 1999; 125: 235-45 http://ncmir.ucsd.edu/CMDA/jsb99.html.
  • 141 Koslow SH. Should the neuroscience community make a paradigm shift to sharing primary data?. Nature Neuroscience 2000; 3 (Suppl. 09) 863-5 www.nature.com/cgi-taf/DynaPage.taf?file=/neuro/journal/v3/n9/full/nn0900_863.html&filetype=pdf.
  • 142 Nature Neuroscience Editorial. A debate over fMRI data sharing. Nature Neuroscience 2000; 3 (Suppl. 09) 845-6.
  • 143 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL. GenBank. Nucleic Acids Res 2000; 28 (Suppl. 01) 15-8.
  • 144 Kotter R. Neuroscience databases – tools for exploring brain structure-function relationships. Philosophic Transact Royal Society; Series B: Biological Sciences 2001: 356 (1412) www.hirn.uni-duesseldorf.de/rk/neurodat.htm.
  • 145 Jakobovits R, Soderland S, Taira RK, Brinkley JF. Requirements of a web-based experiment management system. In: Proceedings, AMIA Symposium. 2000. Los Angeles; 2000. p. 374-8.
  • 146 Jakobovits RM, Brinkley JF, Rosse C, Weinberger E. Enabling clinicians, researchers, and educators to build custom web-based biomedical information systems. In: Proc AMIA Annual Fall Symposium; 2001. p. 279-83.
  • 147 Jakobovits R. WIRM: A perl-based application server. Web Techniques 2000 (September): 97-100 www.webtechniques.com/archives/2000/09/jakobovits/.
  • 148 Jakobovits RM, Rosse C, Brinkley JF. An open source toolkit for building biomedical web applications. J Am Med Ass,. In Press 2002
  • 149 Pelletier M, Latteier A. The Zope Book. New Riders; 2001. www.zope.org/Members/michel/ZB/.
  • 150 Brinkley JF, Jakobovits RM. UW Brain Project Language Map Experiment Management System. http://tela.biostr.washington.edu/cgibin/repos/bmap_repo/main-menu.pl ; 2001
  • 151 Wong STC, Hoo KS, Knowlton RC, Laxer KD, Cao X, Hawkins RA, Dillon WP, Arenson RL. Design and applications of a multimodality image data warehouse framework. J Am Med Ass 2002; 9: 239-54.
  • 152 Letovsky SI, Whitehead SHJ, Paik CH, Miller GA, Gerber J, Herskovits EH, Fulton TK, Bryan RN. A brain-image database for structure-function analysis. Am. J Neuroradiology 1998; 19: 1869-77.
  • 153 Herskovits EH. An architecture for a brain-image database. Methods Inf Med 2000; 39 4-5 291-7.
  • 154 Arbib M. Neural plasticity: data and computational structure. http://www-hbp.usc.edu ; 2001
  • 155 Gazzaniga MS. The fMRI data center. www.fmridc.org ; 2001
  • 156 Herskovits EH, Megalooikonomou V, Davatzikos C, Chen A, Bryan RN, Gerring JP. Is the spatial distribution of brain lesions associated with closed-head injury predictive of subsequent development of attention-deficit/hyper-activity disorder? Analysis with brain-image database. Radiology 1999; 213 (Suppl. 02) 389-94.
  • 157 Beeman DE, Bower JM, De Schutter E, Efthimiadis EN, Goddard N, Leigh J. The GENESIS simulator-based neuronal database. In: Koslow SH, Huerta MF. editors. Neuroinformatics: An Overview of the Human Brain Project. Malwah, New Jersey: Lawrence Erlbaum; 1997. p. 57-81. www.genesis-sim.org/hbp.
  • 158 Miller PL, Nadkarni P, Singer M, Marenco L, Hines M, Shepard G. Integration of multidisciplinary sensory data: a pilot model of the Human Brain Project approach. J Am Med Ass 2001; 8 (Suppl. 01) 34-48 http://ycmi-hbp.med.yale.edu/senselab/.
  • 159 Dashti AE, Ghandeharizadeh S, Stone J, Swanson LW, Thompson RH. Database challenges and solutions in neuroscientific applications. Neuroimage 1997; 5 (Suppl. 02) 97-115.
  • 160 Human Brain Project. Annual Spring Meeting. www.nimh.nih.gov/neuroinformatics/electronicdemo2002.cfm ; 2002
  • 161 Fox PT, Mikiten S, Davis G, Lancaster JL. BrainMap: A database of human functional brain mapping. In: Thatcher RW, Hallett M, Zeffiro T, John ER, Heurta M. editors. Functional Neuroimaging. San Diego: Academic Press; 1994. p. 95-106. http://ric.uthscsa.edu/projects.
  • 162 Bowden DM, Robertson JE, Martin RF, Du-bach MF, Wu JS, McLean MR, Brinkley JF. Web-tools for neuroscience based on Neuro-Names, a template brain atlas, edgewarp and geographic information systems software. In: Fifth international confernce on functional mapping of the human brain. Heinrich-Heine University; Dusseldorf, Germany;: 1999. http://braininfo.rprc.washington.edu.
  • 163 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000; 28: 235-42.
  • 164 Bly BM, Rebbechi D, Grasso G, Hanson SJ. A peer-to-peer database for brain imaging data. In: Human Brain Mapping; 2001. www.academicpress.com/www/journal/hbm2001/11/785.htm.
  • 165 Gribble S, Halevy A, Ives Z, Rodrig M, Suciu D. What can databases do for peer-to-peer?. In: WebDB Workshop on Databases and the Web. 2001. http://data.cs.washington.edu/papers/p2p.pdf.