Nervenheilkunde 2017; 36(01/02): 78-81
DOI: 10.1055/s-0038-1635135
Muskelerkrankungen
Schattauer GmbH

Neues aus der neuromuskulären Grundlagenforschung

News from neuromuscular research
M. Gautel
1   Randall Division for Cell and Molecular Biophysics, King’s College London
,
R. Schröder
2   Institut für Neuropathologie, Universitätsklinikum Erlangen
› Author Affiliations
Further Information

Publication History

eingegangen am: 20 September 2016

angenommen am: 30 September 2016

Publication Date:
03 February 2018 (online)

Zusammenfassung

Die neuromuskuläre Forschung hat revolutionäre Erweiterungen des technischen Repertoires erlebt. Die vorliegende Arbeit diskutiert die wesentlichen Entwicklungen auf den Gebieten der genetischen Diagnostik, der “Omics”-Anwendungen vom Epigenom bis zum Proteom, der Genom-Editierung in Tierund Zellmodellen sowie neue optische Bildgebungsverfahren, die sowohl die neuromuskuläre Grundlagenforschung als auch die translationale und klinische Forschung transformieren.

Summary

Neuromuscular research has experienced over the last few years revolutionary advances in technical possibilities. This article discusses essential developments in genetic diagnostics, “omics”-approaches from epigenome to proteome, genome editing in animal and cell models, and new optical imaging modalities that are likely to be transformative from fundamental muscle research to translational and clinical research.

 
  • Literatur

  • 1 Nigro V, Savarese M. Next-generation sequencing approaches for the diagnosis of skeletal muscle disorders. Curr Opin Neurol 2016; 29: 621-7.
  • 2 Manrai AK. et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med 2016; 375: 655-65.
  • 3 Sharples AP. et al. Does skeletal muscle have an ‘epi’-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 2016; 15: 603-16.
  • 4 Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet 2016; 17: 19-32.
  • 5 Simionescu-Bankston A, Kumar A. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med 2016; 94: 853-66.
  • 6 Winter L. et al. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol 2016; 132: 453-73.
  • 7 Dowling P. et al. Proteomic profiling of muscle fibre type shifting in neuromuscular diseases. Expert Rev Proteomics 2016; 13: 783-99.
  • 8 Fuller HR. et al. Understanding the molecular consequences of inherited muscular dystrophies: advancements through proteomic experimentation. Expert Rev Proteomics 2016; 13: 659-71.
  • 9 Schiaffino S. et al. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle. Scand J Med Sci Sports 2015; 25 Suppl 4: 41-8.
  • 10 Murgia M. et al. Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep 2015; 16: 387-95.
  • 11 Deshmukh AS. et al. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteomics 2015; 14: 841-53.
  • 12 Winter L. et al. Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle. J Clin Invest 2014; 124: 1144-57.
  • 13 Sakellariou P. et al. Neuromuscular electrical stimulation promotes development in mice of mature human muscle from immortalized human myoblasts. Skelet Muscle 2016; 06: 4.
  • 14 Bank EM, Gruenbaum Y. Caenorhabditis elegans as a model system for studying the nuclear lamina and laminopathic diseases. Nucleus 2011; 02: 350-7.
  • 15 Plantie E. et al. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish. Molecules 2015; 20: 6237-53.
  • 16 Chevessier F. et al. Myofibrillar instability exacerbated by acute exercise in filaminopathy. Hum Mol Genet 2015; 24: 7207-20.
  • 17 Duan D. Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene Ther Clin Dev 2015; 26: 57-69.
  • 18 Selsby JT. et al. Porcine models of muscular dystrophy. ILAR J 2015; 56: 116-26.
  • 19 Tschaharganeh DF. et al. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J 2016; 283: 3194-203.
  • 20 Ma D, Liu F. Genome editing and its applications in model organisms. Genomics Proteomics Bioinformatics 2015; 13: 336-44.
  • 21 Ma D. et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 2013; 34: 1122-33.
  • 22 Shoji E. et al. Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. Sci Rep 2015; 05: 12831.
  • 23 Negroni E. et al. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathol Appl Neurobiol 2015; 41: 270-87.
  • 24 Dunn GA. et al. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc 2002; 205: 109-12.
  • 25 Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell. 2016 doi 10.1111/boc.201600040.
  • 26 da Silva KLopes. et al. Titin visualization in real time reveals an unexpected level of mobility within and between sarcomeres. J Cell Biol 2011; 193: 785-98.
  • 27 Matthews DR. et al. Time-lapse FRET microscopy using fluorescence anisotropy. J Microsc 2010; 237: 51-62.
  • 28 Weitsman G. et al. Imaging tumour heterogeneity of the consequences of a PKCalpha-substrate interaction in breast cancer patients. Biochem Soc Trans 2014; 42: 1498-505.
  • 29 Betzig E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313: 1642-5.
  • 30 Hess ST. et al. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006; 91: 4258-72.
  • 31 Rust MJ. et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006; 03: 793-5.
  • 32 Cox S. et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 2012; 09: 195-200.
  • 33 Eggeling C. et al. Lens-based fluorescence nanoscopy. Q Rev Biophys 2015; 48: 178-243.
  • 34 Kühlbrandt W. Cryo-EM enters a new era. Elife 2014; 03: e03678.
  • 35 Wolff G. et al. Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell 2016; 108: 245-58.