J Pediatr Genet 2018; 07(04): 164-173
DOI: 10.1055/s-0038-1655755
Case Report
Georg Thieme Verlag KG Stuttgart · New York

Prioritization of Candidate Genes for Congenital Diaphragmatic Hernia in a Critical Region on Chromosome 4p16 using a Machine-Learning Algorithm

Danielle A. Callaway
1   Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
,
Ian M. Campbell
2   Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
,
Samantha R. Stover
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
,
Andres Hernandez-Garcia
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
,
Shalini N. Jhangiani
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
4   Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
,
Jaya Punetha
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
,
Ingrid S. Paine
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
,
Jennifer E. Posey
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
,
Donna Muzny
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
4   Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
,
Kevin P. Lally
5   Department of Pediatric Surgery, McGovern Medical School at UT Health, Houston, Texas, United States
,
James R. Lupski
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
4   Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
6   Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
,
Chad A. Shaw
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
,
Caraciolo J. Fernandes
6   Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
,
Daryl A. Scott
3   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
7   Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
› Author Affiliations
Funding This project was supported by the National Institutes of Health/Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 HD064667 to DAS), National Institutes of Health/National Institute of Neurological Disease and Stroke (F30 NS083159 to IMC), the United States National Human Genome Research Institute/National Heart Blood and Lung Institute (UM1 HG006542 to the Baylor-Hopkins Center for Mendelian Genomics), the National Human Genome Research Institute (K08 HG008986 to JEP), and the Ting Tsung and Wei Fong Chao Foundation (Physician-Scientist Award to JEP).
Further Information

Publication History

01 December 2017

10 April 2018

Publication Date:
30 May 2018 (online)

Abstract

Wolf–Hirschhorn syndrome (WHS) is caused by partial deletion of the short arm of chromosome 4 and is characterized by dysmorphic facies, congenital heart defects, intellectual/developmental disability, and increased risk for congenital diaphragmatic hernia (CDH). In this report, we describe a stillborn girl with WHS and a large CDH. A literature review revealed 15 cases of WHS with CDH, which overlap a 2.3-Mb CDH critical region. We applied a machine-learning algorithm that integrates large-scale genomic knowledge to genes within the 4p16.3 CDH critical region and identified FGFRL1, CTBP1, NSD2, FGFR3, CPLX1, MAEA, CTBP1-AS2, and ZNF141 as genes whose haploinsufficiency may contribute to the development of CDH.

Supplementary Material

 
  • References

  • 1 Wolf U, Reinwein H, Porsch R, Schröter R, Baitsch H. Deficiency on the short arms of a chromosome No. 4 [in German]. Humangenetik 1965; 1 (05) 397-413
  • 2 Cooper H, Hirschhorn K. Apparent deletion of short arms of one chromosome (4 or 5) in a child with defects of midline fusion. Mamm Chrom Nwsl 1961; 4 (14) 14-16
  • 3 Hirschhorn K, Cooper HL, Firschein IL. Deletion of short arms of chromosome 4-5 in a child with defects of midline fusion. Humangenetik 1965; 1 (05) 479-482
  • 4 Battaglia A, Carey JC, South ST. Wolf-Hirschhorn syndrome. In: Pagon RA, Adam MP, Ardinger HH. , et al, eds. GeneReviews(®). Seattle,WA: University of Washington, Seattle; 2015
  • 5 Lazjuk GI, Lurie IW, Ostrowskaja TI. , et al. The Wolf-Hirschhorn syndrome. II. Pathologic anatomy. Clin Genet 1980; 18 (01) 6-12
  • 6 Lurie IW, Lazjuk GI, Ussova YI, Presman EB, Gurevich DB. The Wolf-Hirschhorn syndrome. I. Genetics. Clin Genet 1980; 17 (06) 375-384
  • 7 Tachdjian G, Fondacci C, Tapia S, Huten Y, Blot P, Nessmann C. The Wolf-Hirschhorn syndrome in fetuses. Clin Genet 1992; 42 (06) 281-287
  • 8 Kobori J, Seto-Donlon S, Gregory T, Bangs D, Hsieh C. A case of monosomy 4p and trisomy 4q derived from a meiotic recombination. Am J Hum Genet Suppl 1993; 55: 1578
  • 9 Howe DT, Kilby MD, Sirry H. , et al. Structural chromosome anomalies in congenital diaphragmatic hernia. Prenat Diagn 1996; 16 (11) 1003-1009
  • 10 Sergi C, Schulze BR, Hager HD. , et al. Wolf-Hirschhorn syndrome: case report and review of the chromosomal aberrations associated with diaphragmatic defects. Pathologica 1998; 90 (03) 285-293
  • 11 Tapper JK, Zhang S, Harirah HM. , et al. Prenatal diagnosis of a fetus with unbalanced translocation (4;13)(p16;q32) with overlapping features of Patau and Wolf-Hirschhorn syndromes. Fetal Diagn Ther 2002; 17 (06) 347-351
  • 12 van Dooren MF, Brooks AS, Hoogeboom AJM. , et al. Early diagnosis of Wolf-Hirschhorn syndrome triggered by a life-threatening event: congenital diaphragmatic hernia. Am J Med Genet A 2004; 127A (02) 194-196
  • 13 Pober BR, Lin A, Russell M. , et al. Infants with Bochdalek diaphragmatic hernia: sibling precurrence and monozygotic twin discordance in a hospital-based malformation surveillance program. Am J Med Genet A 2005; 138A (02) 81-88
  • 14 Basgul A, Kavak ZN, Akman I, Basgul A, Gokaslan H, Elcioglu N. Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p-) in association with congenital diaphragmatic hernia, cystic hygroma and IUGR. Clin Exp Obstet Gynecol 2006; 33 (02) 105-106
  • 15 Casaccia G, Mobili L, Braguglia A, Santoro F, Bagolan P. Distal 4p microdeletion in a case of Wolf-Hirschhorn syndrome with congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 2006; 76 (03) 210-213
  • 16 Tautz J, Veenma D, Eussen B. , et al. Congenital diaphragmatic hernia and a complex heart defect in association with Wolf-Hirschhorn syndrome. Am J Med Genet A 2010; 152A (11) 2891-2894
  • 17 Van Buggenhout G, Melotte C, Dutta B. , et al. Mild Wolf-Hirschhorn syndrome: micro-array CGH analysis of atypical 4p16.3 deletions enables refinement of the genotype-phenotype map. J Med Genet 2004; 41 (09) 691-698
  • 18 Slavotinek AM, Moshrefi A, Davis R. , et al. Array comparative genomic hybridization in patients with congenital diaphragmatic hernia: mapping of four CDH-critical regions and sequencing of candidate genes at 15q26.1-15q26.2. Eur J Hum Genet 2006; 14 (09) 999-1008
  • 19 South ST, Bleyl SB, Carey JC. Two unique patients with novel microdeletions in 4p16.3 that exclude the WHS critical regions: implications for critical region designation. Am J Med Genet A 2007; 143A (18) 2137-2142
  • 20 Hammond P, Hannes F, Suttie M. , et al. Fine-grained facial phenotype-genotype analysis in Wolf-Hirschhorn syndrome. Eur J Hum Genet 2012; 20 (01) 33-40
  • 21 Battaglia A, Carey JC, South ST. Wolf-Hirschhorn syndrome: A review and update. Am J Med Genet C Semin Med Genet 2015; 169 (03) 216-223
  • 22 Campbell IM, Rao M, Arredondo SD. , et al. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet 2013; 9 (09) e1003797
  • 23 Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT. ; Mouse Genome Database Group. The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 2011; 39 (Database issue): D842-D848
  • 24 Ashburner M, Ball CA, Blake JA. , et al; The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25 (01) 25-29
  • 25 Cowley MJ, Pinese M, Kassahn KS. , et al. PINA v2.0: mining interactome modules. Nucleic Acids Res 2012; 40 (Database issue): D862-D865
  • 26 Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010; 38 (Database issue): D355-D360
  • 27 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120 (01) 15-20
  • 28 Su AI, Wiltshire T, Batalov S. , et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 2004; 101 (16) 6062-6067
  • 29 Bernstein BE, Stamatoyannopoulos JA, Costello JF. , et al; The NIH Roadmap Epigenomics Mapping Consortium. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010; 28 (10) 1045-1048
  • 30 Donahoe PK, Longoni M, High FA. Polygenic causes of congenital diaphragmatic hernia produce common lung pathologies. Am J Pathol 2016; 186 (10) 2532-2543
  • 31 Kardon G, Ackerman KG, McCulley DJ. , et al. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10 (08) 955-970
  • 32 Zayed H, Chao R, Moshrefi A. , et al. A maternally inherited chromosome 18q22.1 deletion in a male with late-presenting diaphragmatic hernia and microphthalmia-evaluation of DSEL as a candidate gene for the diaphragmatic defect. Am J Med Genet A 2010; 152A (04) 916-923
  • 33 Beck TF, Campeau PM, Jhangiani SN. , et al. FBN1 contributing to familial congenital diaphragmatic hernia. Am J Med Genet A 2015; 167A (04) 831-836
  • 34 Lek M, Karczewski KJ, Minikel EV. , et al; Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536 (7616): 285-291
  • 35 Catela C, Bilbao-Cortes D, Slonimsky E, Kratsios P, Rosenthal N, Te Welscher P. Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfrl1 null mice. Dis Model Mech 2009; 2 (5–6): 283-294
  • 36 Baertschi S, Zhuang L, Trueb B. Mice with a targeted disruption of the Fgfrl1 gene die at birth due to alterations in the diaphragm. FEBS J 2007; 274 (23) 6241-6253
  • 37 Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 2002; 22 (15) 5296-5307
  • 38 Russell MK, Longoni M, Wells J. , et al. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes. Proc Natl Acad Sci U S A 2012; 109 (08) 2978-2983
  • 39 Trueb B, Zhuang L, Taeschler S, Wiedemann M. Characterization of FGFRL1, a novel fibroblast growth factor (FGF) receptor preferentially expressed in skeletal tissues. J Biol Chem 2003; 278 (36) 33857-33865
  • 40 Rieckmann T, Kotevic I, Trueb B. The cell surface receptor FGFRL1 forms constitutive dimers that promote cell adhesion. Exp Cell Res 2008; 314 (05) 1071-1081
  • 41 Trueb B, Taeschler S. Expression of FGFRL1, a novel fibroblast growth factor receptor, during embryonic development. Int J Mol Med 2006; 17 (04) 617-620
  • 42 Amann R, Wyder S, Slavotinek AM, Trueb B. The FgfrL1 receptor is required for development of slow muscle fibers. Dev Biol 2014; 394 (02) 228-241
  • 43 Dingemann J, Doi T, Ruttenstock EM, Puri P. Downregulation of FGFRL1 contributes to the development of the diaphragmatic defect in the nitrofen model of congenital diaphragmatic hernia. Eur J Pediatr Surg 2011; 21 (01) 46-49
  • 44 Lopez J imenez N, Gerber S, Popovici V. , et al. Examination of FGFRL1 as a candidate gene for diaphragmatic defects at chromosome 4p16.3 shows that Fgfrl1 null mice have reduced expression of Tpm3, sarcomere genes and Lrtm1 in the diaphragm. Hum Genet 2010; 127 (03) 325-336
  • 45 Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: central players in development and disease. Biomol Concepts 2014; 5 (06) 489-511
  • 46 Stec I, Wright TJ, van Ommen GJ. , et al. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet 1998; 7 (07) 1071-1082
  • 47 Nimura K, Ura K, Shiratori H. , et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 2009; 460 (7252): 287-291
  • 48 Vougiouklakis T, Hamamoto R, Nakamura Y, Saloura V. The NSD family of protein methyltransferases in human cancer. Epigenomics 2015; 7 (05) 863-874
  • 49 Ozcan A, Acer H, Ciraci S. , et al. Neuroblastoma in a child with Wolf-Hirschhorn syndrome. J Pediatr Hematol Oncol 2017; 39 (04) e224-e226
  • 50 Su N, Xu X, Li C. , et al. Generation of Fgfr3 conditional knockout mice. Int J Biol Sci 2010; 6 (04) 327-332
  • 51 Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12 (04) 390-397
  • 52 Reim K, Mansour M, Varoqueaux F. , et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 2001; 104 (01) 71-81
  • 53 Soni S, Bala S, Gwynn B, Sahr KE, Peters LL, Hanspal M. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem 2006; 281 (29) 20181-20189
  • 54 Tommerup N, Aagaard L, Lund CL. , et al. A zinc-finger gene ZNF141 mapping at 4p16.3/D4S90 is a candidate gene for the Wolf-Hirschhorn (4p-) syndrome. Hum Mol Genet 1993; 2 (10) 1571-1575
  • 55 Kalsoom UE, Klopocki E, Wasif N. , et al. Whole exome sequencing identified a novel zinc-finger gene ZNF141 associated with autosomal recessive postaxial polydactyly type A. J Med Genet 2013; 50 (01) 47-53
  • 56 Eswarakumar VP, Schlessinger J. Skeletal overgrowth is mediated by deficiency in a specific isoform of fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A 2007; 104 (10) 3937-3942