CC BY-NC-ND 4.0 · Int Arch Otorhinolaryngol 2019; 23(02): 241-249
DOI: 10.1055/s-0038-1676659
Update Manuscript
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Nasal Polyposis: More than a Chronic Inflammatory Disorder—A Disease of Mechanical Dysfunction—The São Paulo Position

1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Richard Louis Voegels
2   Department of Otolaryngology, USP, São Paulo, SP, Brazil
,
Shirley Pignatari
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Luiz Carlos Gregório
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Thiago Freire Pinto Bezerra
3   Department of Otolaryngology, UFPE, Recife, PE, Brazil
,
Luciano Gregorio
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Leonardo Balsalobre
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Miguel Soares Tepedino
4   Department of Otolaryngology, UERJ, Rio de Janeiro, RJ, Brazil
,
Nathália Coronel
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Fabio de Rezende Pinna
2   Department of Otolaryngology, USP, São Paulo, SP, Brazil
,
José Mendes Neto
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Pedro Oliveira
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Eduardo Macoto
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Renato Stefanini
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Claudia Figueiredo
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Fernanda Haddad
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Renata Pilan
2   Department of Otolaryngology, USP, São Paulo, SP, Brazil
,
Ana Bezerra Soter
2   Department of Otolaryngology, USP, São Paulo, SP, Brazil
,
Nelson Almeida Melo
2   Department of Otolaryngology, USP, São Paulo, SP, Brazil
,
Danilo Almeida Candido
5   Department of Medicine, Nephrology Division, Unifesp, São Paulo, SP, Brazil
,
Jonatas do Amaral
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Rodrigo de Paula Santos
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Thibaut Van Zele
6   Ear, Nose and Throat Department,, University of Ghent, Ghent, Belgium
,
Reginaldo Fujita
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
,
Juliana L. Dreyfuss
7   Department of Biochemistry, Unifesp, São Paulo, SP, Brazil
,
Wallace Chamon
8   Department of Ophthalmology and Visual Sciences, Unifesp, São Paulo, SP, Brazil
9   Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
,
Adriano Mesquita Alencar
10   Laboratory of Microrheology and Molecular Physiology, Institute of Physics, USP, São Paulo, SP, Brazil
,
Claudina Perez-Novo
11   Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
,
Aldo Cassol Stamm
1   Department of Otolaryngology – Head and Neck Surgery, Unifesp, São Paulo, SP, Brazil
› Author Affiliations
Further Information

Publication History

29 May 2018

21 October 2018

Publication Date:
01 March 2019 (online)

Abstract

Introduction The importance of our study lies in the fact that we have demonstrated the occurrence of mechanical dysfunction within polypoid tissues, which promotes the development of polyps in the nasal cavity.

Objective To change the paradigm of nasal polyposis (NP). In this new conception, the chronic nasal inflammatory process that occurs in response to allergies, to pollution, to changes in the epithelial barrier, or to other factors is merely the trigger of the development of the disease in individuals with a genetic predisposition to an abnormal tissue remodeling process, which leads to a derangement of the mechanical properties of the nasal mucosa and, consequently, allows it to grow unchecked.

Data Synthesis We propose a fundamentally new approach to intervening in the pathological process of NP, addressing biomechanical properties, fluid dynamics, and the concept of surface tension.

Conclusion The incorporation of biomechanical knowledge into our understanding of NP provides a new perspective to help elucidate the physiology and the pathology of nasal polyps, and new avenues for the treatment and cure of NP.

 
  • References

  • 1 Fokkens WJ, Lund VJ, Mullol J. , et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012; 50 (01) 1-12 . Doi: 10.4193/Rhino50E2
  • 2 Pezato R, Świerczyńska-Krępa M, Niżankowska-Mogilnicka E, Derycke L, Bachert C, Pérez-Novo CA. Role of imbalance of eicosanoid pathways and staphylococcal superantigens in chronic rhinosinusitis. Allergy 2012; 67 (11) 1347-1356 . Doi: 10.1111/all.12010
  • 3 Poposki JA, Peterson S, Welch K. , et al. Elevated presence of myeloid dendritic cells in nasal polyps of patients with chronic rhinosinusitis. Clin Exp Allergy 2015; 45 (02) 384-393 . Doi: 10.1111/cea.12471
  • 4 Pezato R, Pérez-Novo CA, Holtappels G. , et al. The expression of dendritic cell subsets in severe chronic rhinosinusitis with nasal polyps is altered. Immunobiology 2014; 219 (09) 729-736 . Doi: 10.1016/j.imbio.2014.05.004
  • 5 Van Bruaene N, Pérez-Novo CA, Basinski TM. , et al. T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol 2008; 121 (06) 1435-1441, 1441.e1–1441.e3 . Doi: 10.1016/j.jaci.2008.02.018
  • 6 Perez-Novo C, Pezato R. Dendritic cell subset expression in severe chronic rhinosinusitis with nasal polyps. Curr Opin Allergy Clin Immunol 2017; 17 (01) 1-4 . Doi: 10.1097/ACI.0000000000000328
  • 7 Pezato R, de Almeida DC, Bezerra TF. , et al. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment. Mediators Inflamm 2014; 2014: 583409 . Doi: 10.1155/2014/583409
  • 8 de Oliveira PWB, Pezato R, Agudelo JSH. , et al. Nasal Polyp-Derived Mesenchymal Stromal Cells Exhibit Lack of Immune-Associated Molecules and High Levels of Stem/Progenitor Cells Markers. Front Immunol 2017; 8: 39 . Doi: 10.3389/fimmu.2017.00039
  • 9 Krysko O, Vandenabeele P, Krysko DV, Bachert C. Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis 2010; 15 (09) 1137-1146 . Doi: 10.1007/s10495-010-0504-x
  • 10 Lam EPS, Kariyawasam HH, Rana BMJ. , et al. IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. J Allergy Clin Immunol 2016; 137 (05) 1514-1524 . Doi: 10.1016/j.jaci.2015.10.019
  • 11 Dilidaer ZY, Zheng Y, Liu Z. , et al. Increased BAFF expression in nasal polyps is associated with local IgE production, Th2 response and concomitant asthma. Eur Arch Otorhinolaryngol 2017; 274 (04) 1883-1890 . Doi: 10.1007/s00405-016-4435-1
  • 12 Lan F, Wang XD, Nauwynck HJ. , et al. Th2 biased upper airway inflammation is associated with an impaired response to viral infection with Herpes simplex virus 1. Rhinology 2016; 54 (02) 141-149 . Doi: 10.4193/Rhin15.213
  • 13 Balsalobre L, Pezato R, Perez-Novo C. , et al. Epithelium and stroma from nasal polyp mucosa exhibits inverse expression of TGF-β1 as compared with healthy nasal mucosa. J Otolaryngol Head Neck Surg 2013; 42 (APR): 29 . Doi: 10.1186/1916-0216-42-29
  • 14 Pezato R, Balsalobre L, Lima M. , et al. Convergence of two major pathophysiologic mechanisms in nasal polyposis: immune response to Staphylococcus aureus and airway remodeling. J Otolaryngol Head Neck Surg 2013; 42 (01) 27 . Doi: 10.1186/1916-0216-42-27
  • 15 Zhang N, Van Zele T, Perez-Novo C. , et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol 2008; 122 (05) 961-968 . Doi: 10.1016/j.jaci.2008.07.008
  • 16 Wang X, Zhang N, Bo M. , et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 2016; 138 (05) 1344-1353 . Doi: 10.1016/j.jaci.2016.05.041
  • 17 Shin S-H, Ye M-K, Kim J-K, Cho C-H. Histological characteristics of chronic rhinosinusitis with nasal polyps: Recent 10-year experience of a single center in Daegu, Korea. Am J Rhinol Allergy 2014; 28 (02) 95-98 . Doi: 10.2500/ajra.2014.28.4003
  • 18 Pezato R, Voegels RL. Why do we not find polyps in the lungs? Bronchial mucosa as a model in the treatment of polyposis. Med Hypotheses 2012; 78 (04) 468-470 . Doi: 10.1016/j.mehy.2012.01.006
  • 19 Pezato R, Voegels RL, Pinto Bezerra TF, Perez-Novo C, Stamm AC, Gregorio LC. Mechanical disfunction in the mucosal oedema formation of patients with nasal polyps. Rhinology 2014; 52 (02) 162-166 . Doi: 10.4193/Rhin13.066
  • 20 Pezato R, Voegels RL, Stamm AC, Gregorio LC. Why we should avoid using inferior turbinate tissue as control to Nasal Polyposis studies. Acta Otolaryngol 2016 . doi: 10.3109
  • 21 Alencar AM, Ferraz MS, Park CY. , et al. Non-equilibrium cytoquake dynamics in cytoskeletal remodeling and stabilization. Soft Matter 2016; 12 (41) 8506-8511 . Doi: 10.1039/c6sm01041e
  • 22 Almeida AB, Giovambattista N, Buldyrev SV, Alencar AM. Validation of Capillarity Theory at the Nanometer Scale. II: Stability and Rupture of Water Capillary Bridges in Contact with Hydrophobic and Hydrophilic Surfaces. J Phys Chem C 2018; 122 (03) 1556-1569
  • 23 Style RW, Jagota A, Hui CY, Dufresne ER. Elastocapillarity. . Surface Tensionand the Mechanics of Soft SolidsAnnual Review of Condensed Matter Physics. 2017; 8: 99-118
  • 24 Hauksbee F. An account of an experiment touching the direction of a drop of oil of oranges, between two glass planes, towards any side of them that is nearest press'd together. Philos Trans R Soc Lond 1711; 27: 374-375
  • 25 Berger G, Finkelstein Y, Ophir D, Landsberg R. Old and new aspects of middle turbinate histopathology. Otolaryngol Head Neck Surg 2009; 140 (01) 48-54 . Doi: 10.1016/j.otohns.2008.10.006
  • 26 Wang Y, Lee HP, Gordon BR. Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin Exp Otorhinolaryngol 2012; 5 (04) 181-187 . Doi: 10.3342/ceo.2012.5.4.181
  • 27 Takeno S, Yoshimura H, Kubota K, Taruya T, Ishino T, Hirakawa K. Comparison of nasal nitric oxide levels between the inferior turbinate surface and the middle meatus in patients with symptomatic allergic rhinitis. Allergol Int 2014; 63 (03) 475-483 . Doi: 10.2332/allergolint.14-OA-0689
  • 28 Kaspar U, Kriegeskorte A, Schubert T. , et al. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol 2016; 18 (07) 2130-2142 . Doi: 10.1111/1462-2920.12891
  • 29 Biswas K, Hoggard M, Jain R, Taylor MW, Douglas RG. The nasal microbiota in health and disease: variation within and between subjects. Front Microbiol 2015; 9: 134 . Doi: 10.3389/fmicb.2015.00134
  • 30 Holley MT, YekrangSafakar A, Maziveyi M, Alahari SK, Park K. Measurement of cell traction force with a thin film PDMS cantilever. Biomed Microdevices 2017; 19 (04) 97
  • 31 Park CY, Tambe D, Alencar AM. , et al. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 2010; 298 (05) C1245-C1252 . Doi: 10.1152/ajpcell.00417.2009
  • 32 Penn R, Mikula S. The role of anti-IgE immunoglobulin therapy in nasal polyposis: a pilot study. Am J Rhinol •••; 21 (04) 428-432
  • 33 Vennera MdelC, Picado C, Mullol J, Alobid I, Bernal-Sprekelsen M. Efficacy of omalizumab in the treatment of nasal polyps. Thorax 2011; 66 (09) 824-825 . Doi: 10.1136/thx.2010.152835
  • 34 Pezato R, Claeys C, Holtappels G, Bachert C, Pérez-Novo C. LTD4 and TGF-β1 Induce the Expression of Metalloproteinase-1 in Chronic Rhinosinusitis via a Cysteinyl Leukotriene Receptor 1-Related Mechanism. Sinusitis. 2016; 1 (01) 65-75 . Doi: 10.3390/sinusitis1010065
  • 35 Gevaert P, Lang-Loidolt D, Lackner A. , et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol 2006; 118 (05) 1133-1141 . Doi: 10.1016/j.jaci.2006.05.031
  • 36 Haye R, Aanesen JP, Burtin B, Donnelly F, Duby C. The effect of cetirizine on symptoms and signs of nasal polyposis. J Laryngol Otol 1998; 112 (11) 1042-1046
  • 37 Van Bruaene N, Derycke L, Perez-Novo CA. , et al. TGF-beta signaling and collagen deposition in chronic rhinosinusitis. J Allergy Clin Immunol 2009; 124 (02) 253-259 , 259.e1–259.e2
  • 38 Gregório L, Pezato R, Felici RS, Kosugi EM. Fibrotic Tissue and Middle Turbinate Exhibit Similar Mechanical Properties. Is Fibrosis a Solution in Nasal Polyposis?. Int Arch Otorhinolaryngol 2017; 21 (02) 122-125
  • 39 Bottos KM, Oliveira AG, Bersanetti PA. , et al. Corneal absorption of a new riboflavin-nanostructured system for transepithelial collagen cross-linking. PLoS One 2013; 8 (06) e66408 . Doi: 10.1371/journal.pone.0066408
  • 40 Balsalobre L, Pezato R, Joao MG, Gregório L, Haddad FLM, Gregorio LC, Fujita R. What is the Impact of Positive Airway Pressure in Nasal Polyposis? An Experimental Study. Int Arch Otorhinolaryngol. 2018; in press. DOI: 10.1055/s-0038-1676095