Synlett 2019; 30(19): 2131-2135
DOI: 10.1055/s-0039-1690227
letter
© Georg Thieme Verlag Stuttgart · New York

Base-Controlled One-Pot Chemoselective Suzuki–Miyaura Reactions for the Synthesis of Unsymmetrical Terphenyls

Xinmin Li
School of Pharmacy, Zunyi Medical University, Zunyi, 563000, P. R. of China   Email: lixm@zmu.edu.cn
,
Fangfang Feng
,
Changyue Ren
,
Yong Teng
,
Qinghong Hu
,
Zeli Yuan
School of Pharmacy, Zunyi Medical University, Zunyi, 563000, P. R. of China   Email: lixm@zmu.edu.cn
› Author Affiliations
This work was financially supported by NSFC (81660575 and 81360471), the United Scientific Research Foundation of Zunyi Medical University (E-234), and the Natural Science and Technology Foundation of Guizhou Province ([2018]1187).
Further Information

Publication History

Received: 29 August 2019

Accepted after revision: 14 October 2019

Publication Date:
04 November 2019 (online)


Abstract

We report a chemoselective Suzuki–Miyaura reaction protocol of using bromophenyl fluorosulfonate as building block for the preparation of unsymmetrical terphenyls. The chemoselective cross-coupling of bromophenyl fluorosulfonate and arylboronic acids can be achieved by controlling base species without using any ligands. Under this methodology, various of m- and p-unsymmetrical terphenyls were obtained in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Takahashi S, Kawano T, Nakajima N, Suda Y, Usukhbayar N, Kimura K, Koshino H. Bioorg. Med. Chem. Lett. 2018; 28: 930
    • 1b Zhang X.-Q, Mou X.-F, Mao N, Hao J.-J, Liu M, Zheng J.-Y, Wang C.-Y, Gu Y.-C, Shao C.-L. Eur. J. Med. Chem. 2018; 146: 232
    • 1c Li W, Li X.-B, Lou H.-X. J. Asian Nat. Prod. Res. 2018; 20: 1
    • 1d Takahashi S, Suda Y, Nakamura T, Matsuoka K, Koshino H. J. Org. Chem. 2017; 82: 3159
    • 1e Li W, Gao W, Zhang M, Li Y.-L, Li L, Li X.-B, Chang W.-Q, Zhao Z.-T, Lou H.-X. J. Nat. Prod. 2016; 79: 2188
    • 1f Liu J.-K. Chem. Rev. 2006; 106: 2209
    • 2a Koga Y, Kaneda T, Saito Y, Murakami K, Itami K. Science 2018; 359: 435
    • 2b Casalini S, Berto M, Leonardi F, Operamolla A, Bortolotti CA, Borsari M, Sun W, Felice RD, Corni S, Albonetti C. Langmuir 2013; 29: 13198
    • 3a Park CH, Kwon YJ, Oh IY, Kim WS. Adv. Synth. Catal. 2017; 359: 107
    • 3b Lips S, Wiebe A, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 10872
    • 3c Ma X, Gu N, Liu Y, Liu P, Xie J, Dai B, Liu Z. Appl. Organomet. Chem. 2015; 29: 50
    • 3d Chang M.-Y, Chan C.-K, Lin S.-Y, Wu M.-H. Tetrahedron 2013; 69: 10036
    • 3e Chang M.-Y, Chan C.-K, Wu M.-H. Tetrahedron 2013; 69: 7916
    • 3f Cho CH, Park H, Park MA, Ryoo TY, Lee YS, Park K. Eur. J. Org. Chem. 2010; 2005: 3177
    • 3g Motti E, Ca ND, Deledda S, Fava E, Panciroli F, Catellani M. Chem. Commun. 2010; 46: 4291
    • 4a Grau D, Grau BW, Hampel F, Tsogoeva SB. Chem. Eur. J. 2018; 24: 6551
    • 4b García-García P, Fernández-Rodríguez MA, Aguilar E. Angew. Chem. Int. Ed. 2009; 48: 5534
    • 4c Zhang L, Liang F, Cheng X, Liu Q. J. Org. Chem. 2009; 74: 899
    • 4d Goel A, Verma D, Singh FV. Tetrahedron Lett. 2005; 46: 8487
    • 5a Yang X, Xu G, Tang W. Tetrahedron 2016; 72: 5178
    • 5b Suzuki A. J. Organomet. Chem. 1999; 576: 147
    • 5c Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 5d Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 5e Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 5f Tang W, Capacci AG, Wei X, Li W, White A, Patel ND, Savoie J, Gao JJ, Rodriguez S, Qu B, Haddad N, Lu BZ, Krishnamurthy D, Yee NK, Senanayake CH. Angew. Chem. Int. Ed. 2010; 49: 5879
    • 6a Antelo Miguez JM, Adrio LA, Sousa-Pedrares A, Vila JM, Hii KK. J. Org. Chem. 2007; 72: 7771
    • 6b Kawada K, Arimura A, Tsuri T, Fuji M, Komurasaki T, Yonezawa S, Kugimiya A, Haga N, Mitsumori S, Inagaki M, Nakatani T, Tamura Y, Takechi S, Taishi T, Kishino J, Ohtani M. Angew. Chem. Int. Ed. 1998; 37: 973
    • 7a Seath CP, Fyfe JW. B, Molloy JJ, Watson AJ. B. Angew. Chem. Int. Ed. 2015; 54: 9976
    • 7b Gillis EP, Burke MD. J. Am. Chem. Soc. 2007; 129: 6716
    • 7c Fyfe JW. B, Fazakerley NJ, Watson AJ. B. Angew. Chem. Int. Ed. 2017; 56: 1249
  • 8 Taylor RH, Felpin F.-X. Org. Lett. 2007; 9: 2911
  • 9 Kazi SA, Campi EM, Hearn MT. Tetrahedron 2018; 74: 1731
  • 10 Li X, Liu C, Wang L, Ye Q, Jin X, Jin Z. Org. Biomol. Chem. 2018; 16: 8719
  • 11 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 12a Liu Z, Li J, Li S, Li G, Sharpless KB, Wu P. J. Am. Chem. Soc. 2018; 140: 2919
    • 12b Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W, Li S, Wang H, Cravatt BF, Forli S, Powers ET. J. Am. Chem. Soc. 2017; 140: 200
    • 13a Zhang E, Tang J, Li S, Wu P, Moses JE, Sharpless KB. Chem. Eur. J. 2016; 22: 5692
    • 13b Liang Q, Xing P, Huang Z, Dong J, Sharpless KB, Li X, Jiang B. Org. Lett. 2015; 17: 1942
    • 13c Revathi L, Ravindar L, Leng J, Rakesh KP, Qin H.-L. Asian J. Org. Chem. 2018; 7: 662
  • 14 General Procedure for the Preparation of Biaryl Fluorosulfonates A mixture of bromophenyl fluorosulfonates (0.5 mmol), arylboronic acid (0.55 mmol), K2CO3 (1 mmol), Pd(OAc)2 (1 mol%), and EtOH/H2O (2 mL/2 mL) was stirred at 25 °C under air for the indicated time. After the reaction, the mixture was added to brine (10 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layers were concentrated in vacuo, and the product was isolated by short chromatography on a silica gel (200–300 mesh) column using petroleum ether (60–90 °C). 3′,4′-Dimethoxybiphenyl-4-yl fluorosulfate (2f) Colorless liquid (140.8 mg, 90%). 1H NMR (400 MHz, CDCl3): δ = 7.62 (d, J = 6.4 Hz, 2 H), 7.38 (d, J = 6.7 Hz, 2 H), 7.08 (d, J = 19.1 Hz, 2 H), 6.96 (s, 1 H), 3.93 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 149.3, 149.2, 149.0, 141.8, 132.1, 128.6, 121.1, 119.6, 111.5, 110.3, 55.9. 19F NMR (376 MHz, CDCl3): δ = 37.4 (s, 1 F). 3′,4′-Dimethoxybiphenyl-3-yl fluorosulfate (2m) Colorless liquid (140.1 mg, 89%). 1H NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 7.8 Hz, 1 H), 7.40 (s, 2 H), 7.18 (d, J = 7.3 Hz, 1 H), 7.03 (d, J = 8.2 Hz, 1 H), 6.97 (s, 1 H), 6.86 (d, J = 8.3 Hz, 1 H), 3.84 (d, J = 11.5 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 150.4, 149.4, 149.3, 143.8, 131.6, 130.5, 126.8, 119.60, 118.9, 118.6, 111.5, 110.1, 55.9. 19F NMR (376 MHz, CDCl3): δ = 37.1 (s, 1 F).
  • 15 General Procedure for the Preparation of Unsymmetrical Terphenyls A mixture of bromophenyl fluorosulfonate (0.5 mmol), arylboronic acid (0.5 mmol), K2CO3 (1 mmol), Pd(OAc)2 (1 mol%), and EtOH/H2O (5 mL/5 mL) was stirred at 25 °C under air for 0.5 h. Then, arylboronic acid (0.5 mmol), (i-Pr)2NH (1 mmol), and Pd(OAc)2 (1 mol%) were added to the reaction mixture and stirred for 3.5 h at 80 °C. Afterwards, the mixture was cooled to room temperature and concentrated in vacuo. The terphenyl product was isolated by short chromatography on a silica gel (200–300 mesh) column using petroleum ether and ethyl acetate. 4′′-Fluoro-3,4-dimethoxy-1,1′:4′,1′′-terphenyl (3l) White solid (126.7 mg, 82%); mp 149–150 °C. 1H NMR (400 MHz, CDCl3): δ = 7.69–7.51 (m, 6 H), 7.19 (dd, J = 8.3, 2.1 Hz, 1 H), 7.17–7.10 (m, 3 H), 6.97 (d, J = 8.3 Hz, 1 H), 3.97 (s, 3 H), 3.94 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 149.2, 148.7, 139.9, 138.7, 133.6, 128.5, 128.5, 127.3, 127.2, 119.3, 115.8, 115.5, 111.5, 110.3, 56.0, 55.9. 5-[3′,4′-Dimethoxy-(1,1′-biphenyl)-4-yl]pyrimidine (3v) White solid (50.2 mg, 38%); mp 85–86 °C. 1H NMR (400 MHz, CDCl3): δ = 9.18 (d, J = 21.5 Hz, 1 H), 8.96 (d, J = 32.8 Hz, 2 H), 7.68 (dd, J = 27.4, 8.2 Hz, 3 H), 7.56 (dd, J = 24.1, 8.4 Hz, 2 H), 7.03 (dd, J = 12.6, 8.8 Hz, 2 H), 3.87 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 160.4, 159.5, 157.3, 156.8, 154.6, 154.4, 141.5, 133.9, 132.4, 132.3, 128.1, 127.6, 127.2, 114.9, 114.3, 55.3.