Synlett 2019; 30(19): 2113-2122
DOI: 10.1055/s-0039-1690708
account
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis of Acridines and Phenazines

Yan Xiao
,
Weiming Hu
,
Song Sun
,
Jin-Tao Yu
,
Jiang Cheng
We thank the National Natural Science Foundation of China (No. 21572025, 21602019, 21672028), ‘Innovation & Entrepreneurship Talents’ Introduction Plan of Jiangsu Province, Natural Science Foundation of Jiangsu Province (BK20171193), Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110) and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center for financial support.
Further Information

Publication History

Received: 17 August 2019

Accepted after revision: 20 September 2019

Publication Date:
14 October 2019 (online)


Abstract

Acridines and phenazines are common motifs in bioactive compounds and natural products. Many excellent works on the synthesis of these skeletons starting from diaryliodonium salts, benzaldehydes, anthranils, azobenzenes, and nitrosobenzenes have been reported. In this overview, we highlight several recent elegant works on the synthesis of acridines and phenazines.

1 Introduction

2 Synthesis of Acridines

3 Synthesis of Phenazines

4 Conclusion

 
  • References

    • 1a Cholewiński G, Dzierzbicka K, Kołodziejczyk AM. Pharmacol. Rep. 2011; 63: 305
    • 1b Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
    • 1c Kotani H, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 15999
    • 1d Dollinger S, Lober S, Klingenstein R, Korth C, Gmeiner P. J. Med. Chem. 2006; 49: 6591
    • 1e Campbell NH, Parkinson GN, Reszka AP, Neidle S. J. Am. Chem. Soc. 2008; 130: 6722
    • 1f MacNeil SL, Wilson BJ, Snieckus V. Org. Lett. 2006; 8: 1133
    • 1g Martins MA. P, Frizzo CP, Moreira DN, Buriol L, Machado P. Chem. Rev. 2009; 109: 4140
    • 1h Kalirajan R, Muralidharan V, Jubie S, Gowramma B, Gomathy S, Sankar S, Elango K. J. Heterocycl. Chem. 2012; 49: 748
    • 2a Laursen JB, Nielsen J. Chem. Rev. 2004; 104: 1663
    • 2b Guttenberger N, Blankenfeldt W, Breinbauer R. Bioorg. Med. Chem. 2017; 25: 6149
    • 2c Cimmino A, Evidente A, Mathieu V, Andolfi A, Lefranc F, Kornienko A, Kiss R. Nat. Prod. Rep. 2012; 29: 487
    • 2d Guttenberger N, Blankenfeldt W, Breinbauer R. Bioorg. Med. Chem. 2017; 25: 6149
    • 2e Laursen JB, Nielsen J. Chem. Rev. 2004; 104: 1663
    • 2f Laborda P, Zhao Y, Ling J, Hou Ro. Liu F. 2018; 66: 630
    • 2g Niu J, Chen J, Xu Z, Zhu X, Wu Q, Li J. Bioorg. Med. Chem. Lett. 2016; 26: 5384
    • 2h Wang W, Preville P, Morin N, Mounir S, Cai W, Siddiqui MA. Bioorg. Med. Chem. Lett. 2000; 10: 1151
    • 2i Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Nat. Prod. Rep. 2018; 35: 257
    • 3a Bernthsen A. Justus Liebigs Ann. Chem. 1878; 192: 1
    • 3b Bernthsen A. Justus Liebigs Ann. Chem. 1884; 224: 1
    • 4a Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14048
    • 4b Guo H.-M, Mao R.-Z, Wang Q.-T, Niu H.-Y, Xie M.-S, Qu G.-R. Org. Lett. 2013; 15: 5460
    • 4c Rogness DC, Larock RC. J. Org. Chem. 2010; 75: 2289
    • 4d Huang Z, Yang Y, Xiao Q, Zhang Y, Wang J. Eur. J. Org. Chem. 2012; 6586
  • 5 Wohl A, Aue W. Ber. Dtsch. Chem. Ges. 1901; 34: 2442
    • 6a Tinsley JM. In Name Reactions in Heterocyclic Chemistry . Li JJ, Corey EJ. 2005
    • 6b Haddadin MJ, Issidorides CH. Heterocycles 1993; 35: 1503
  • 7 Garrison AT, Abouelhassan Y, Kallifidas D, Tan H, Kim YS, Jin S, Luesch H, Huigens RW. III. J. Med. Chem. 2018; 61: 3962
  • 8 Lian Y, Hummel JR, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2013; 135: 12548
  • 9 Morioka R, Hirano K, Satoh T, Miura M. Chem. Eur. J. 2014; 20: 12720
  • 10 Zhang J, Chen Y, Chen X, Zheng X, Cao W, Chen J, Zhang M. Tetrahedron 2014; 70: 5820
  • 11 Pang X, Chen C, Su X, Li M, Wen L. Org. Lett. 2014; 16: 6228
  • 12 Pang X, Lou Z, Li M, Wen L, Chen C. Eur. J. Org. Chem. 2015; 3361
  • 13 Wang T.-J, Chen W.-W, Li Y, Xu M.-H. Org. Biomol. Chem. 2015; 13: 6580
  • 14 Senadi GC, Dhandabani GK, Hu W.-P, Wang J.-J. Green Chem. 2016; 18: 6241
  • 15 Chen X, Xie Y, Li C, Xiao F, Deng G.-J. Eur. J. Org. Chem. 2017; 577
  • 16 Mu W, Wang M, Li H.-J, Huang D.-M, Zhang Y.-Y, Li C.-Y, Liu Y, Wu Y.-C. Adv. Synth. Catal. 2017; 359: 4250
  • 17 Hu W, Zheng Q, Sun S, Cheng J. Chem. Commun. 2017; 53: 6263
  • 18 Wang M, Fan Q, Jiang X. Org. Lett. 2018; 20: 216
  • 19 Wu H, Zhang Z, Ma N, Liu Q, Liu T, Zhang G. J. Org. Chem. 2018; 83: 12880
  • 20 Kim S, Han SH, Mishra NK, Chun R, Jung YH, Kim HS, Park JS, Kim IS. Org. Lett. 2018; 20: 4010
  • 21 Kim S, Kundu A, Chun R, Han SH, Pandey AK, Yoo S, Park J, Kim HS, Ku J.-M, Kim IS. Asian J. Org. Chem. 2018; 7: 2069
  • 22 Berger KE, McCormick GM, Jaye JA, Rozeske CM, Fort EH. Molecules 2018; 23: 2867
  • 23 Laha JK, Tummalapalli KS. S, Gupta A. Org. Lett. 2014; 16: 4392
  • 24 Koepf M, Lee SH, Brennan BJ, Méndez-Hernández DD, Batista VS, Brudvig GW, Crabtree RH. J. Org. Chem. 2015; 80: 9881
  • 25 Kumar S, Saunthwal RK, Mujahid M, Aggarwal T, Verma AK. J. Org. Chem. 2016; 81: 9912
  • 26 Sheng J, He R, Xue J, Wu C, Qiao J, Chen C. Org. Lett. 2018; 20: 4458
    • 27a Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
    • 27b Chen B, Hou X.-L, Li Y.-X, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
    • 27c Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
    • 27d Phipps RJ, McMurray L, Ritter S, Duong HA, Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
  • 28 Xiao Y, Wu X, Wang H, Sun S, Yu J.-T, Cheng J. Org. Lett. 2019; 21: 2565