Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(19): 2148-2152
DOI: 10.1055/s-0039-1690724
DOI: 10.1055/s-0039-1690724
letter
Acetic Acid Catalysed One-Pot Synthesis of Pyrrolo[1,2-a]quinoxaline Derivatives
We thank London Metropolitan University for funding.Further Information
Publication History
Received: 11 September 2019
Accepted after revision: 07 October 2019
Publication Date:
22 October 2019 (online)
Abstract
An efficient acetic acid catalysed reaction has been developed for the synthesis of 4-aryl substituted pyrrolo[1,2-a]quinoxalines from readily available starting materials. A range of structures have been synthesised in very good to excellent yields. The one-pot reaction proceeds through imine formation, cyclisation followed by air oxidation.
Key words
pyrrolo[1,2-a]quinoxaline - catalysis - Pictet–Spengler reaction - 1-(2-aminophenyl)pyrroles - biological heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690724.
- Supporting Information
-
References and Notes
- 1a Escude C, Nguyen CH, Kukreti S, Janin Y, Sun JS, Bisagni E, Garestier T, Helene C. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 3591
- 1b Deady LW, Kaye AJ, Finlay GJ, Baguley BC, Denny WA. J. Med. Chem. 1997; 40: 2040
- 1c Huang A, Ma C. Mini-Rev. Med. Chem. 2013; 13: 607
- 1d Rodrigues FA. R, Bomfim ID. S, Cavalcanti BC, Pessoa CD. O, Wardell JL, Wardell SM. S. V, Pinheiro AC, Kaiser CR, Nogueira TC. M, Low JN, Gomes LR, Souza MV. N. D. Bioorg. Med. Chem. Lett. 2014; 24: 934
- 2a Parrino B, Carbone A, Ciancimino C, Spano V, Montalbano A, Barraja P, Cirrincione G, Diana P, Sissi C, Palumbo M, Pinato O, Pennati M, Beretta G, Folini M, Matyus P, Balogh B, Zaffaroni N. Eur. J. Med. Chem. 2015; 94: 149
- 2b Desplat V, Geneste A, Begorre MA, Guillon J. J. Enzyme Inhib. Med. Chem. 2008; 23: 648
- 2c Alleca S, Corona P, Lorigo M, Paglietti G, Loddo R, Mascia V, Busonera B, La Colla P. Farmaco 2003; 58: 639
- 2d Lv W, Budke B, Pawlowski M, Connell PP, Kozikowski AP. J. Med. Chem. 2016; 59: 4511
- 2e Aiello F, Carullo G, Giordano F, Spina E, Nigro A, Garofalo A, Tassini S, Costantino G, Vincetti p, Bruno A, Radi M. ChemMedChem 2017; 12: 1279
- 2f You W, Rotili D, Li T.-M, Kambach C, Meleshin M, Schutkowski M, Chua KF, Mai A, Steegborn C. Angew. Chem. Int. Ed. 2017; 56: 1007
- 3a Guillon J, Cohen A, Gueddouda NM, Das RN, Moreau S, Ronga L, Savrimoutou S, Basmaciyan L, Monnier A, Monget M, Rubio S, Garnerin T, Azas N, Mergny J.-L, Mullie C, Sonnet P. J. Enzyme Inhib. Med. Chem. 2017; 32: 547
- 3b Ronga L, Del Favero M, Cohen A, Soum C, Le Pape P, Savrimoutou S, Pinaud N, Mullie C, Daulouede S, Vincendeau P, Farvacques N, Agnamey P, Pagniez F, Hutter S, Azas N, Sonnet P, Guillon J. Eur. J. Med. Chem. 2014; 81: 378
- 3c Guillon J, Mouray E, Moreau S, Mullie C, Forfar I, Desplat V, Belisle-Fabre S, Pinaud N, Ravanello F, Le-Naour A, Leger JM, Gosmann G, Jarry C, Deleris G, Sonnet P, Grellier P. Eur. J. Med. Chem. 2011; 46: 2310
- 4a Desplat V, Moreau S, Gay A, Fabre SB, Thiolat D, Massip S, Macky G, Godde F, Mossalayi D, Jarry C, Guillon J. J. Enzyme Inhib. Med. Chem. 2010; 25: 204
- 4b Desplat V, Moreau S, Belisle-Fabre S, Thiolat D, Uranga J, Lucas R, de Moor L, Massip S, Jarry C, Mossalayi DM, Sonnet P, Déléris G, Guillon J. J. Enzyme Inhib. Med. Chem. 2011; 26: 657
- 5 Guillon J, Borgne ML, Rimbault C, Moreau S, Savrimoutou S, Pinaud N, Baratin S, Marchivie M, Roche S, Bollacke A, Pecci A, Alvarez L, Desplat V, Jose J. Eur. J. Med. Chem. 2013; 65: 205
- 6 Guillon J, Dallemagne P, Pfeiffer B, Renard P, Manechez D, Kervran A, Rault S. Eur. J. Med. Chem. 1998; 33: 293
- 7 Campiani G, Morelli E, Gemma S, Nacci V, Butini S, Hamon M, Novellino E, Greco G, Cagnotto A, Goegan M, Cervo L, Valle FD, Fracasso C, Caccia S, Mennini T. J. Med. Chem. 1999; 42: 4362
- 8a Jacobsen EJ, Stelzer LS, Belonga KL, Carter DB, Im WB, Sethy VH, Tang AH, Von Voigtlander PF, Petke JD. J. Med. Chem. 1996; 39: 3820
- 8b Colotta V, Cecchi L, Catarzi D, Filacchioini G, Martini C, Tacchi P, Lucacchini A. Eur. J. Med. Chem. 1995; 30: 133
- 9 Gemma S, Colombo L, Forloni G, Savini L, Fracasso C, Caccia S, Salmona M, Brindisi M, Joshi BP, Tripaldi P, Giorgi G, Taglialatela-Scafati O, Novellino E, Fiorini I, Campiani G, Butini S. Org. Biomol. Chem. 2011; 9: 5137
- 10a Kalinin AA, Mamedov VA. Chem. Heterocycl. Compd. 2011; 46: 1423 ; and references therein
- 10b Mamedov VA, Kalinin AA. Chem. Heterocycl. Compd. 2010; 46: 641 ; and references therein
- 11 Kalinin AA, Islamova LN, Fazleeva GM. Chem. Heterocycl. Compd. 2019; 55: 584 ; and references therein
- 12 Pereira MF, Thiéry V. Org. Lett. 2012; 14: 4754
- 13 Sun Q, Liu L, Yang Y, Zha Z, Wang Z. Chin. Chem. Lett. 2019; 30: 1379
- 14a Patel B, Saviolaki G, Ayats C, Kapadia T, Hilton ST. RSC Adv. 2014; 4: 18930
- 14b Patel B, Hilton ST. Synlett 2015; 26: 79
- 15a Wang C, Li Y, Guo R, Tian J, Tao C, Cheng B, Wang H, Zhang J, Zhai H. Asian J. Org. Chem. 2015; 4: 866
- 15b Xie C, Feng L, Li W, Ma X, Liu Y, Ma C. Org. Biomol. Chem. 2016; 14: 8529
- 16a Guillon J, Forfar I, Mamani-Matsuda M, Desplat V, Saliege M, Thiolat D, Massip S, Tabourier A, Léger J. -M, Dufaure B. Bioorg. Med. Chem. 2007; 15: 194
- 16b Cheeseman GW. H, Tuck B. J. Chem. Soc. (C) 1966; 852
- 17a Kamal A, Babu KS, Kovvuri J, Manasa V, Ravikumar A, Alarifi A. Tetrahedron Lett. 2015; 56: 7012
- 17b Preetam A, Nath M. RSC Adv. 2015; 5: 21843
- 17c Wang C, Li Y, Zhao J, Cheng B, Wang H, Zhai H. Tetrahedron Lett. 2016; 57: 3908
- 18 Verma AK, Jha RR, Kasi Sankar V, Aggarwal T, Singh R, Chandra R. Eur. J. Org. Chem. 2011; 6998
- 19 Huo H.-R, Tang X.-Y, Gong Y.-F. Synthesis 2018; 50: 2727
- 20 Krishna T, Reddy TR, Laxminarayana E, Kalita D. ChemistrySelect 2019; 4: 250
- 21a An Z, Jiang Y, Guan X, Yan R. Chem. Commun. 2018; 54: 10738
- 21b An Z, Zhao L, Wu M, Ni J, Qi Z, Yu G, Yan R. Chem. Commun. 2017; 53: 11572
- 21c Lade JJ, Patil BN, Vhatkar MV, Vadagaonkar KS, Chaskar AC. Asian J. Org. Chem. 2017; 6: 1579
- 21d Lade JJ, Patil BN, Sathe PA, Vadagaonkar KS, Chetti P, Chaskar AC. ChemistrySelect 2017; 2: 6811
- 22 Typical Procedure for the Synthesis of Pyrrolo[1,2-a]quinoxaline 3a: To a solution of 2-(1H-pyrrol-1-yl)aniline (1 equiv) in methanol (5 mL) were added benzaldehyde (1 equiv) and acetic acid (0.1 equiv) and the mixture was heated to 60 °C for 8 h. The reaction mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. The crude reaction mixture was purified by column chromatography to give 2-substituted pyrrolo[1,2-a]quinoxaline 3a as a pale-yellow solid; mp 118–120 °C. IR (neat): 2929 (CH) cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.07 (dd, J = 7.7, 1.4 Hz, 1 H, ArH), 7.99–8.04 (m, 5 H, 5 × ArH), 7.88 (dd, J = 8.0, 1.4 Hz, 1 H, ArH), 7.01 (dd, J = 3.8, 1.3 Hz, 1 H, ArH), 6.90 (dd, J = 3.9, 2.7 Hz, 1 H, ArH). 13C (126 MHz, CDCl3): δ = 154.4 (C), 138.4 (C), 136.2 (C), 130.2 (CH), 129.7 (CH), 128.6 (2 × CH), 128.5 (2 × CH), 127.4 (CH), 127.1 (C), 125.3 (C), 125.2 (CH), 114.5 (CH), 113.9 (CH), 113.6 (CH), 108.7 (CH). MS: m/z (%) = 244 (100) [M + H]+.
- 23 Woon KL, Ariffin A, Ho KW, Chen S.-A. RSC Adv. 2018; 8: 9850