Synlett 2020; 31(01): 77-82
DOI: 10.1055/s-0039-1691488
letter
© Georg Thieme Verlag Stuttgart · New York

Rhodium(III)-Catalyzed Regioselective C7-Allylation of Indazoles

Jiyou Huo
,
Hongshun Yuan
,
Lanting Xu
,
Xianhua Pan
This work was supported by the Shanghai Sailing Program (17YF1418900).
Further Information

Publication History

Received: 05 October 2019

Accepted after revision: 31 October 2019

Publication Date:
19 November 2019 (online)


Abstract

An efficient rhodium-catalyzed regioselective C–H allylation of N,N-diisopropylcarbamoyl indazoles with allylic carbonates as allylating agents has been developed. This methodology provides facile access to C7-allylated indazoles with high regioselectivity, ample substrate scope and broad functional group tolerance.

Supporting Information

Primary Data

 
  • References and Notes

  • 1 New address: College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, P. R. of China.
    • 2a Ali NA. S, Dar BA, Pradhan V, Farooqui M. Mini-Rev. Med. Chem. 2013; 13: 1792
    • 2b Gaikwad DD, Chapolikar AD, Devkate CG, Warad KD, Tayade AP, Pawar RP, Domb AJ. Eur. J. Med. Chem. 2015; 90: 707
    • 2c Moreau P, Anizon F, Giraud FJ, Esvan Y. Recent Pat. Anti-Cancer Drug Discovery 2016; 11: 309
    • 2d Lipunova GN, Nosova EV, Charushin VN, Chupakhin ON. J. Fluorine Chem. 2016; 192: 1
    • 2e Zhang SG, Liang CG, Zhang WH. Molecules 2018; 23: 2783
    • 2f Wan Y, He S, Li W, Tang Z. Anti-Cancer Agents Med. Chem. 2018; 18: 1228
    • 3a Huang LJ, Shih ML, Chen HS, Pan SL, Teng CM, Lee FY, Kuo SC. Bioorg. Med. Chem. 2006; 14: 528
    • 3b Liu Z, Shi F, Martinez PD, Raminelli C, Larock RC. J. Org. Chem. 2008; 73: 219
    • 3c Lian Y, Bergman RG, Lavis LD, Ellman JA. J. Am. Chem. Soc. 2013; 135: 7122
    • 3d Yi X, Jiao L, Xi C. Org. Biomol. Chem. 2016; 14: 9912
    • 3e Xu P, Wang G, Wu Z, Li S, Zhu C. Chem. Sci. 2017; 8: 1303
    • 3f Mishra NK, Park J, Oh H, Han SH, Kim IS. Tetrahedron 2018; 74: 6769
    • 3g Kondo M, Takizawa S, Jiang Y, Sasai H. Chem. Eur. J. 2019; 25: 9866
    • 3h Wang G, Sun J, Wang K, Han J, Li H, Duan G, You G, Li F, Xia C. Org. Chem. Front. 2019; 6: 1608
    • 5a Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
    • 5b Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 5c Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 5d Gandeepan P, Cheng CH. Chem. Asian J. 2016; 11: 448
    • 5e Yang YF, Hong X, Yu JQ, Houk KN. Acc. Chem. Res. 2017; 50: 2853
    • 5f Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
  • 6 Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 7a Ohnmacht SA, Culshaw AJ, Greaney MF. Org. Lett. 2010; 12: 224
    • 7b Naas M, El Kazzouli S, Essassi el M, Bousmina M, Guillaumet G. J. Org. Chem. 2014; 79: 7286
    • 7c El Kazzouli S, Koubachi J, El Brahmi N, Guillaumet G. RSC Adv. 2015; 5: 15292
  • 8 Naas M, El Kazzouli S, El Essassi M, Bousmina M, Guillaumet G. Org. Lett. 2015; 17: 4320
    • 9a Singsardar M, Dey A, Sarkar R, Hajra A. J. Org. Chem. 2018; 83: 12694
    • 9b Ghosh P, Mondal S, Hajra A. ACS Omega 2019; 4: 9049
    • 10a Ghosh P, Mondal S, Hajra A. J. Org. Chem. 2018; 83: 13618
    • 10b Murugan A, Babu VN, Polu A, Sabarinathan N, Bakthadoss M, Sharada DS. J. Org. Chem. 2019; 84: 7796
  • 11 Dey A, Hajra A. Adv. Synth. Catal. 2019; 361: 842
  • 12 Singsardar M, Laru S, Mondal S, Hajra A. J. Org. Chem. 2019; 84: 4543
    • 13a Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 13b Rej S, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
    • 13c Zhang Q, Shi BF. Chin. J. Chem. 2019; 37: 647
    • 13d Dey A, Sinha SK, Achar TK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10820
  • 14 Guo L, Chen Y, Zhang R, Peng Q, Xu L, Pan X. Chem. Asian J. 2017; 12: 289
    • 16a Scholz U, Winterfeldt E. Nat. Prod. Rep. 2000; 17: 349
    • 16b Li SM. Nat. Prod. Rep. 2010; 27: 57
    • 16c Lindel T, Marsch N, Adla SK. Top. Curr. Chem. 2012; 309: 67
    • 16d Xu LL, Hai P, Zhang SB, Xiao JF, Gao Y, Ma BJ, Fu HY, Chen YM, Yang XL. J. Nat. Prod. 2019; 82: 221
    • 17a Yu S, Li X. Org. Lett. 2014; 16: 1200
    • 17b Yu DG, Gensch T, de Azambuja F, Vasquez-Cespedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
    • 17c Park J, Mishra NK, Sharma S, Han S, Shin Y, Jeong T, Oh JS, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2015; 80: 1818
    • 17d Suzuki Y, Sun B, Sakata K, Yoshino T, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2015; 54: 9944
    • 17e Ackermann L, Moselage M, Sauermann N, Koeller J, Liu W, Gelman D. Synlett 2015; 26: 1596
    • 17f Choi M, Park J, Sharma S, Jo H, Han S, Jeon M, Mishra NK, Han SH, Lee JS, Kim IS. J. Org. Chem. 2016; 81: 4771
    • 17g Chen SY, Li Q, Wang H. J. Org. Chem. 2017; 82: 11173
  • 19 Preparation of 3aa; Typical Procedure: To a 10 mL dry Schlenk tube with a stirring bar, indazole substrate 1a (0.2 mmol), [RhCp*Cl2]2 (6.2 mg, 5 mol%), Cu(OAc)2·H2O (20 mg, 50 mol%), AgNTf2 (15.5 mg, 20 mol%), and 4Å MS (100 mg) were added. The tube was evacuated and backfilled with nitrogen before allyl methyl carbonate 2a (116 μL, 1.0 mmol) and 1,2,3-trichloropropane (1.0 mL) were added. The reaction mixture was stirred at 65 °C for 24 h. After cooling to room temperature, the reaction mixture was purified by chromatography on silica with a gradient eluent of petroleum ether and ethyl acetate to give the corresponding product. 7-Allyl-N,N-diisopropyl-1H-indazole-1-carboxamide (3aa): Yield: 82% (46.7 mg); white solid. 1H NMR (500 MHz, CDCl3): δ = 8.07 (s, 1 H), 7.61 (d, J = 7.9 Hz, 1 H), 7.27 (d, J = 7.1 Hz, 1 H), 7.19 (t, J = 7.5 Hz, 1 H), 6.06–6.00 (m, 1 H), 5.07 (d, J = 10.1 Hz, 1 H), 4.96 (d, J = 17.2 Hz, 1 H), 4.12 (brs, 1 H), 3.77 (d, J = 4.7 Hz, 2 H), 3.61 (brs, 1 H), 1.56 (brs, 6 H), 1.26 (brs, 6 H). 13C NMR (125 MHz, CDCl3): δ = 151.62, 139.15, 136.55, 136.18, 128.91, 125.84, 124.68, 122.73, 119.02, 116.28, 51.36, 46.29, 36.71, 20.59, 20.08. HRMS (ESI): m/z [M + H]+ calcd for C17H24N3O+: 286.19139; found: 286.19119.