Synlett 2020; 31(09): 838-844
DOI: 10.1055/s-0039-1691738
account
© Georg Thieme Verlag Stuttgart · New York

C–H Insertion Reactions of Donor/Donor Carbenes: Inception, Investigation, and Insights

Department of Chemistry, One Shields Ave, University of California, Davis, CA 95166, USA   Email: [email protected]
› Author Affiliations
Funding for this work has come from Fundación Ramon Areces (postdoctoral fellowship for Dr. Marcos González-Lopéz), CAPES (Coordenação de Aperfeicoamento de Pessoal de Nível Superior; postdoctoral fellowship for Dr. Cristian Soldi), the American Chemical Society Petroleum Research Fund (ACS PRF; 53767-ND1), and the National Institutes of Health (NIH/NIGMS; R01 GM124234).
Further Information

Publication History

Received: 06 December 2019

Accepted after revision: 24 January 2020

Publication Date:
10 March 2020 (online)


Abstract

Insertion reactions of donor/donor carbenes have emerged from obscurity to become a versatile method for the synthesis of a variety of cyclic structures with excellent control of diastereo- and enantio­selectivity. This Account describes the origin of this project as part of a natural product synthesis and the ensuing decade of reaction development that has resulted in new asymmetric methods as well as intriguing tangential observations.

 
  • References

  • 1 Gibbons S. Nat. Prod. Rep. 2004; 21: 263
  • 2 Sato M, Tsuchiya H, Miyazaki T, Ohyama M, Tanaka T, Iinuma M. Lett. Appl. Microbiol. 1995; 21: 219
  • 3 Davies HM. L. J. Org. Chem. 2019; 84: 12722
  • 4 Deng Y, Qiu H, Srinivas HD, Doyle MP. Curr. Org. Chem. 2016; 20: 61
  • 5 Eberlein TH, West FG, Tester RW. J. Org. Chem. 1992; 57: 3479
  • 6 Park YS, Grove CI, González-López M, Urgaonkar S, Fettinger JC, Shaw JT. Angew. Chem. Int. Ed. 2011; 50: 3730
  • 7 Cheung W.-H, Zheng S.-L, Yu W.-Y, Zhou G.-C, Che C.-M. Org. Lett. 2003; 5: 2535
  • 8 Javed MI, Brewer M. Org. Synth. 2008; 85: 189
  • 9 Soldi C, Lamb KN, Squitieri RA, Gonzalez-Lopez M, Di Maso MJ, Shaw JT. J. Am. Chem. Soc. 2014; 136: 15142
  • 10 Lamb KN, Squitieri RA, Chintala SR, Kwong AJ, Balmond EI, Soldi C, Dmitrenko O, Reis MC, Chung R, Addison JB, Fettinger JC, Hein JC, Tantillo DJ, Fox JM, Shaw JT. Chem. Eur. J. 2017; 23: 11843
  • 11 Quiclet-Sire B, Zard SZ. Chem. Commun. 2006; 1831
  • 12 van Alphen J. Recl. Trav. Chim. Pays-Bas 1943; 62: 485
  • 13 van Alphen J. Recl. Trav. Chim. Pays-Bas 1943; 62: 491
  • 14 Huttel R, Riedl J, Martin H, Franke K. Chem. Ber. 1960; 93: 1425
  • 15 Padwa A, Goldstein SI. Can. J. Chem. 1984; 62: 2506
  • 16 Zheng Y, Qiu L, Hong K, Dong S, Xu X. Chem. Eur. J. 2018; 24: 6705
  • 17 Dimirjian CA, Castineira Reis M, Balmond EI, Turman NC, Rodriguez EP, Di Maso MJ, Fettinger JC, Tantillo DJ, Shaw JT. Org. Lett. 2019; 21: 7209
  • 18 Furrow ME, Myers AG. J. Am. Chem. Soc. 2004; 126: 12222
  • 19 Squitieri RA, Shearn-Nance GP, Hein JE, Shaw JT. J. Org. Chem. 2016; 81: 5278
  • 20 Souza LW, Squitieri RA, Dimirjian CA, Hodur BM, Nickerson LA, Penrod CN, Cordova J, Fettinger JC, Shaw JT. Angew. Chem. Int. Ed. 2018; 57: 15213
  • 21 Munro DP, Sharp JT. Tetrahedron Lett. 1980; 21: 4109
  • 22 Blake AJ, Harding M, Sharp JT. Tetrahedron Lett. 1988; 29: 6361
  • 23 Ito M, Kondo Y, Nambu H, Anada M, Takeda K, Hashimoto S. Tetrahedron Lett. 2015; 56: 1397
  • 24 Nickerson LA, Bergstrom BD, Gao M, Shiue Y.-S, Laconsay CJ, Culberson MR, Knauss WA, Fettinger JC, Tantillo DJ, Shaw JT. Chem. Sci. 2020; 11: 494