CC BY 4.0 · Pharmaceutical Fronts 2019; 01(01): e33-e45
DOI: 10.1055/s-0039-1700507
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Immunotoxins: Targeted Toxin Delivery for Cancer Therapy

Xin Mei
1   Jecho Laboratories, Inc. Maryland, United States
2   Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
,
Junsheng Chen
3   Engineering Research Center of Cell and Therapeutic Antibody, MOE, China
4   School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
,
Jing Wang
3   Engineering Research Center of Cell and Therapeutic Antibody, MOE, China
4   School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
,
Jianwei Zhu
1   Jecho Laboratories, Inc. Maryland, United States
2   Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
3   Engineering Research Center of Cell and Therapeutic Antibody, MOE, China
4   School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
› Author Affiliations
Further Information

Publication History

03 October 2019

07 November 2019

Publication Date:
30 December 2019 (online)

Abstract

Immunotoxins are proteins that consist of a protein toxin conjugated to a specific targeting moiety. The targeting moiety is usually an antibody or ligand, such as monoclonal antibody, antibody fragment, a cytokine, or a growth factor. The toxins usually come from plant toxins, bacterial toxins, or human-origin cytotoxic elements. Nearly all toxins work by enzymatically inhibiting protein synthesis. After binding to antigens or receptors on target cell surfaces, immunotoxins are internalized and translocated to the cytosol where they can kill the cells. Immunotoxins have demonstrated high cytotoxicity to cancer cells and to date two immunotoxins have been approved by U.S. Food and Drug Administration on the markets for the treatment of hematological tumors: Lumoxiti and Ontak. Many other molecules are under development or clinical trials for different forms of cancer. Although immunotoxins exhibit great potency in xenograft model systems and early clinical trials, there are obstacles that limit successful treatments, including immunogenicity, nonspecific toxicity, and poor penetration. However, efforts are underway to address these problems. In this review, we summarize immunotoxins currently in clinical trials for either hematological tumors or solid tumors, outline the design of immunotoxins utilizing variety of components, and discuss the prominent examples of redesigned immunotoxins with reduced immunogenicity and nonspecific toxicity, as well as the strategies in manufacturing immunotoxins. With further improvements, it is anticipated that immunotoxins will play an increasing role in cancer therapy.

 
  • References

  • 1 Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256 (5517): 495-497
  • 2 Pento JT. Monoclonal antibodies for the treatment of cancer. Anticancer Res 2017; 37 (11) 5935-5939
  • 3 Opaliński Ł, Szymczyk J, Szczepara M. , et al. High affinity promotes internalization of engineered antibodies targeting FGFR1. Int J Mol Sci 2018; 19 (05) E1435
  • 4 Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 2016; 8 (04) 659-671
  • 5 Wang J, Han L, Chen J, Xie Y, Jiang H, Zhu J. Reduction of non-specific toxicity of immunotoxin by intein mediated reconstitution on target cells. Int Immunopharmacol 2019; 66: 288-295
  • 6 Leshem Y, Pastan I. Pseudomonas exotoxin immunotoxins and antitumor immunity: from observations at the patient′s bedside to evaluation in preclinical models. Toxins (Basel) 2019; 11 (01) E20
  • 7 Han L, Chen J, Ding K. , et al. Efficient generation of bispecific IgG antibodies by split intein mediated protein trans-splicing system. Sci Rep 2017; 7 (01) 8360
  • 8 Trabolsi A, Arumov A, Schatz JH. T cell-activating bispecific antibodies in cancer therapy. J Immunol 2019; 203 (03) 585-592
  • 9 Russell L, Peng KW, Russell SJ, Diaz RM. Oncolytic viruses: BioDrugs 2019; Oct; 33 (05) 485-501
  • 10 Mazor R, Onda M, Pastan I. Immunogenicity of therapeutic recombinant immunotoxins. Immunol Rev 2016; 270 (01) 152-164
  • 11 Vallera DA, Kreitman RJ. Immunotoxins targeting B cell malignancy-progress and problems with immunogenicity. Biomedicines 2018; 7 (01) E1
  • 12 Nobre CF, Newman MJ, DeLisa A, Newman P. Moxetumomab pasudotox-tdfk for relapsed/refractory hairy cell leukemia: a review of clinical considerations. Cancer Chemother Pharmacol 2019; 84 (02) 255-263
  • 13 Madhumathi J, Verma RS. Therapeutic targets and recent advances in protein immunotoxins. Curr Opin Microbiol 2012; 15 (03) 300-309
  • 14 Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. Oncologist 2015; 20 (02) 176-185
  • 15 Akbari B, Farajnia S, Ahdi Khosroshahi S. , et al. Immunotoxins in cancer therapy: review and update. Int Rev Immunol 2017; 36 (04) 207-219
  • 16 Madhumathi J, Devilakshmi S, Sridevi S, Verma RS. Immunotoxin therapy for hematologic malignancies: where are we heading?. Drug Discov Today 2016; 21 (02) 325-332
  • 17 Spiess K, Jakobsen MH, Kledal TN, Rosenkilde MM. The future of antiviral immunotoxins. J Leukoc Biol 2016; 99 (06) 911-925
  • 18 Bourgeois M, Bailly C, Frindel M. , et al. Radioimmunoconjugates for treating cancer: recent advances and current opportunities. Expert Opin Biol Ther 2017; 17 (07) 813-819
  • 19 Sahota S, Vahdat LT. Sacituzumab govitecan: an antibody-drug conjugate. Expert Opin Biol Ther 2017; 17 (08) 1027-1031
  • 20 Lambert JM, Morris CQ. Antibody-drug conjugates(ADCs) for personalized treatment of solid tumors: a review. Adv Ther 2017; 34 (05) 1015-1035
  • 21 Sassoon I, Blanc V. Antibody-drug conjugate (ADC) clinical pipeline: a review. Methods Mol Biol 2013; 1045: 1-27
  • 22 Minich SS. Brentuximab vedotin: a new age in the treatment of Hodgkin lymphoma and anaplastic large cell lymphoma. Ann Pharmacother 2012; 46 (03) 377-383
  • 23 Arannilewa AJ, Suleiman Alakanse O, Adesola AO. , et al. Molecular docking analysis of Cianidanol fromGinkgo biloba with HER2+ breast cancer target. Bioinformation 2018; 14 (09) 482-487
  • 24 Mullard A. Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov 2013; 12 (05) 329-332
  • 25 Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev 2017; 109: 102-118
  • 26 Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res 2011; 17 (20) 6406-6416
  • 27 Manoukian G, Hagemeister F. Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther 2009; 9 (11) 1445-1451
  • 28 Wayne AS, Shah NN, Bhojwani D. , et al. Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia. Blood 2017; 130 (14) 1620-1627
  • 29 Kreitman RJ. Hairy cell leukemia: present and future directions. Leuk Lymphoma 2019; 60 (12) 2869-2879
  • 30 Wang H, Song S, Kou G. , et al. Treatment of hepatocellular carcinoma in a mouse xenograft model with an immunotoxin which is engineered to eliminate vascular leak syndrome. Cancer Immunol Immunother 2007; 56 (11) 1775-1783
  • 31 Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I. Immunotoxins for leukemia. Blood 2014; 123 (16) 2470-2477
  • 32 Huang NY, Zhou XK, Qiu J. , et al. Synergistic cytotoxic effect of anti-EGFR/gelonin immunotoxin combined with taxol a anti-tumor effects and its mechanism. World J Cancer Res 2014; 4: 4-9
  • 33 Hlongwane P, Mungra N, Madheswaran S, Akinrinmade OA, Chetty S, Barth S. Human granzyme B based targeted cytolytic fusion proteins. Biomedicines 2018; 6 (02) E72
  • 34 Kurschus FC, Fellows E, Stegmann E, Jenne DE. Granzyme B delivery via perforin is restricted by size, but not by heparan sulfate-dependent endocytosis. Proc Natl Acad Sci U S A 2008; 105 (37) 13799-13804
  • 35 Besenicar MP, Metkar S, Wang B, Froelich CJ, Anderluh G. Granzyme B translocates across the lipid membrane only in the presence of lytic agents. Biochem Biophys Res Commun 2008; 371 (03) 391-394
  • 36 Bots M, Medema JP. Granzymes at a glance. J Cell Sci 2006; 119 (Pt 24): 5011-5014
  • 37 Mangan MS, Melo-Silva CR, Luu J. , et al. A pro-survival role for the intracellular granzyme B inhibitor Serpinb9 in natural killer cells during poxvirus infection. Immunol Cell Biol 2017; 95 (10) 884-894
  • 38 Ardelt W, Ardelt B, Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol 2009; 625 (1–3): 181-189
  • 39 De Lorenzo C, D'Alessio G. From immunotoxins to immunoRNases. Curr Pharm Biotechnol 2008; 9 (03) 210-214
  • 40 Rybak SM, Arndt MA, Schirrmann T, Dübel S, Krauss J. Ribonucleases and immunoRNases as anticancer drugs. Curr Pharm Des 2009; 15 (23) 2665-2675
  • 41 Kreitman RJ, Tallman MS, Robak T. , et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012; 30 (15) 1822-1828
  • 42 Entwistle J, Kowalski M, Brown J. , et al. The preclinical and clinical evaluation of VB4–845: an immunotoxin with a de-immunized payload for the systemic treatment of solid tumors. In: Phillips GL. , ed. Antibody-Drug Conjugates and Immunotoxins: from Preclinical Development to Therapeutic Applications. New York, NY: Springer; 2013: 349-367
  • 43 Lai EW, Joshi BH, Martiniova L. , et al. Overexpression of interleukin-13 receptor-alpha2 in neuroendocrine malignant pheochromocytoma: a novel target for receptor directed anti-cancer therapy. J Clin Endocrinol Metab 2009; 94 (08) 2952-2957
  • 44 Kreitman RJ, Hassan R, Fitzgerald DJ, Pastan I. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res 2009; 15 (16) 5274-5279
  • 45 Ochiai H, Archer GE, Herndon II JE. , et al. EGFRvIII-targeted immunotoxin induces antitumor immunity that is inhibited in the absence of CD4+ and CD8+ T cells. Cancer Immunol Immunother 2008; 57 (01) 115-121
  • 46 Li YM, Hall WA. Targeted toxins in brain tumor therapy. Toxins (Basel) 2010; 2 (11) 2645-2662
  • 47 Mahmud H, Dälken B, Wels WS. Induction of programmed cell death in ErbB2/HER2-expressing cancer cells by targeted delivery of apoptosis-inducing factor. Mol Cancer Ther 2009; 8 (06) 1526-1535
  • 48 Ding D. RE: Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321 printing error. Neurol Res 2011; 33 (04) 448
  • 49 Hassan R, Thomas A, Alewine C, Le DT, Jaffee EM, Pastan I. Mesothelin immunotherapy for cancer: Ready for prime time. J Clin Oncol 2016; 34 (34) 4171-4179
  • 50 Liu TF, Hall PD, Cohen KA. , et al. Interstitial diphtheria toxin-epidermal growth factor fusion protein therapy produces regressions of subcutaneous human glioblastoma multiforme tumors in athymic nude mice. Clin Cancer Res 2005; 11 (01) 329-334
  • 51 Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol 2003; 65 (01) 3-13
  • 52 Mueller BU, Seipel K, Pabst T. Myelodysplastic syndromes and acute myeloid leukemias in the elderly. Eur J Intern Med 2018; 58: 28-32
  • 53 Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet 2018; 392 (10147): 593-606
  • 54 Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010; 33 (02) 153-165
  • 55 Powell Jr DJ, Felipe-Silva A, Merino MJ. , et al. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 2007; 179 (07) 4919-4928
  • 56 Kaplan G, Mazor R, Lee F, Jang Y, Leshem Y, Pastan I. Improving the in vivo efficacy of an anti-Tac (CD25) immunotoxin by Pseudomonas exotoxin A domain II engineering. Mol Cancer Ther 2018; 17 (07) 1486-1493
  • 57 Shimamura T, Husain SR, Puri RK. The IL-4 and IL-13 pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg Focus 2006; 20 (04) E11
  • 58 Sokolova E, Guryev E, Yudintsev A, Vodeneev V, Deyev S, Balalaeva I. HER2-specific recombinant immunotoxin 4D5scFv-PE40 passes through retrograde trafficking route and forces cells to enter apoptosis. Oncotarget 2017; 8 (13) 22048-22058
  • 59 Rainov NG, Söling A. Clinical studies with targeted toxins in malignant glioma. Rev Recent Clin Trials 2006; 1 (02) 119-131
  • 60 MacDonald GC, Rasamoelisolo M, Entwistle J. , et al. A phase I clinical study of VB4-845: weekly intratumoral administration of an anti-EpCAM recombinant fusion protein in patients with squamous cell carcinoma of the head and neck. Drug Des Devel Ther 2009; 2: 105-114
  • 61 Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008; 44 (01) 46-53
  • 62 Hosseinian SA, Haddad-Mashadrizeh A, Dolatabadi S. Simulation and stability assessment of anti-EpCAM immunotoxin for cancer therapy. Adv Pharm Bull 2018; 8 (03) 447-455
  • 63 Lv M, Qiu F, Li T. , et al. Construction, expression, and characterization of a recombinant immunotoxin targeting EpCAM. Mediators Inflamm 2015; 2015: 460264
  • 64 Vallera DA, Chen H, Sicheneder AR, Panoskaltsis-Mortari A, Taras EP. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009; 33 (09) 1233-1242
  • 65 Du X, Beers R, Fitzgerald DJ, Pastan I. Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity. Cancer Res 2008; 68 (15) 6300-6305
  • 66 Robak T. Hairy-cell leukemia variant: recent view on diagnosis, biology and treatment. Cancer Treat Rev 2011; 37 (01) 3-10
  • 67 Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 2011; 17 (20) 6398-6405
  • 68 Pui CH, Campana D, Pei D. , et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009; 360 (26) 2730-2741
  • 69 Doronina SO, Bovee TD, Meyer DW. , et al. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem 2008; 19 (10) 1960-1963
  • 70 Younes A, Bartlett NL, Leonard JP. , et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010; 363 (19) 1812-1821
  • 71 Borthakur G, Rosenblum MG, Talpaz M. , et al. Phase 1 study of an anti-CD33 immunotoxin, humanized monoclonal antibody M195 conjugated to recombinant gelonin (HUM-195/rGEL), in patients with advanced myeloid malignancies. Haematologica 2013; 98 (02) 217-221
  • 72 Dean A, Talpaz M, Kantarjian H. , et al. Phase I clinical trial of the anti-CD33 immunotoxin HuM195/rgel in patients (pts) with advanced myeloid malignancies. J Clin Oncol 2010; 28 (Suppl. 15) 6549
  • 73 Li N, Fu H, Hewitt SM, Dimitrov DS, Ho M. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci U S A 2017; 114 (32) E6623-E6631
  • 74 Amadori S, Suciu S, Selleslag D. , et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol 2016; 34 (09) 972-979
  • 75 Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 1978; 15 (01) 245-250
  • 76 Lee BS, Lee Y, Park J. , et al. Construction of an immunotoxin via site-specific conjugation of anti-Her2 IgG and engineered Pseudomonas exotoxin A. J Biol Eng 2019; 13: 56
  • 77 Zhao P, Wang P, Dong S. , et al. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng 2019; 3 (04) 292-305
  • 78 Jiao P, Zhang J, Dong Y, Wei D, Ren Y. Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Appl Microbiol Biotechnol 2018; 102 (22) 9585-9594
  • 79 Weldon JE, Pastan I. A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011; 278 (23) 4683-4700
  • 80 Udaondo Z, Ramos JL, Segura A, Krell T, Daddaoua A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb Biotechnol 2018; 11 (03) 442-454
  • 81 Murphy JR. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins (Basel) 2011; 3 (03) 294-308
  • 82 Michalska M, Wolf P. Pseudomonas exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015; 6: 963
  • 83 Parveen S, Bishai W, Murphy J. Corynebacterium diphtheriae: Diphtheria Toxin, the tox Operon, and Its Regulation by Fe2+ Activation of apo-DtxR. Microbiol Spectrum 7 (04) GPP3-0063-2019 . doi:10.1128/microbiolspec.GPP3-0063-2019
  • 84 Rust A, Partridge LJ, Davletov B, Hautbergue GM. The use of plant-derived ribosome inactivating proteins in immunotoxin development: past, present and future generations. Toxins (Basel) 2017; 9 (11) E344
  • 85 Polito L, Bortolotti M, Battelli MG, Calafato G, Bolognesi A. Ricin: an ancient story for a timeless plant toxin. Toxins (Basel) 2019; 11 (06) E324
  • 86 Cremer C, Hehmann-Titt G, Schiffer S. , et al. Engineered versions of granzyme B and angiogenin overcome intrinsic resistance to apoptosis mediated by human cytolytic fusion proteins. In: Verma RS. , ed. Resistance to Immunotoxins in Cancer Therapy. Cham: Springer International Publishing; 2015: 185-219
  • 87 Mazor R, Eberle JA, Hu X. , et al. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes. Proc Natl Acad Sci U S A 2014; 111 (23) 8571-8576
  • 88 Onda M, Vincent JJ, Lee B, Pastan I. Mutants of immunotoxin anti-Tac(dsFv)-PE38 with variable number of lysine residues as candidates for site-specific chemical modification. 1. Properties of mutant molecules. Bioconjug Chem 2003; 14 (02) 480-487
  • 89 Kollmorgen G, Palme K, Seidl A. , et al. A re-engineered immunotoxin shows promising preclinical activity in ovarian cancer. Sci Rep 2017; 7 (01) 18086
  • 90 Onda M, Nagata S, FitzGerald DJ. , et al. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J Immunol 2006; 177 (12) 8822-8834
  • 91 Onda M, Beers R, Xiang L, Nagata S, Wang QC, Pastan I. An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc Natl Acad Sci U S A 2008; 105 (32) 11311-11316
  • 92 Weldon JE, Xiang L, Chertov O. , et al. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009; 113 (16) 3792-3800
  • 93 Hansen JK, Weldon JE, Xiang L, Beers R, Onda M, Pastan I. A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice. J Immunother 2010; 33 (03) 297-304
  • 94 Onda M, Beers R, Xiang L. , et al. Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc Natl Acad Sci U S A 2011; 108 (14) 5742-5747
  • 95 Stish BJ, Oh S, Chen H, Dudek AZ, Kratzke RA, Vallera DA. Design and modification of EGF4KDEL 7Mut, a novel bispecific ligand-directed toxin, with decreased immunogenicity and potent anti-mesothelioma activity. Br J Cancer 2009; 101 (07) 1114-1123
  • 96 Liu W, Onda M, Lee B. , et al. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes. Proc Natl Acad Sci U S A 2012; 109 (29) 11782-11787
  • 97 Izidoro MA, Gouvea IE, Santos JA. , et al. A study of human furin specificity using synthetic peptides derived from natural substrates, and effects of potassium ions. Arch Biochem Biophys 2009; 487 (02) 105-114
  • 98 Frankel AE, Woo JH. Bispecific immunotoxins. Leuk Res 2009; 33 (09) 1173-1174
  • 99 Vallera DA, Oh S, Chen H, Shu Y, Frankel AE. Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol Cancer Ther 2010; 9 (06) 1872-1883
  • 100 Bokori-Brown M, Metz J, Petrov PG. , et al. Interactions between Pseudomonas immunotoxins and the plasma membrane: Implications for CAT-8015 immunotoxin therapy. Front Oncol 2018; 8: 553
  • 101 Liu XY, Pop LM, Schindler J, Vitetta ES. Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. MAbs 2012; 4 (01) 57-68
  • 102 Moss DL, Park HW, Mettu RR, Landry SJ. Deimmunizing substitutions in Pseudomonas exotoxin domain III perturb antigen processing without eliminating T-cell epitopes. J Biol Chem 2019; 294 (12) 4667-4681
  • 103 Zuppone S, Fabbrini MS, Vago R. Hosts for hostile protein production: the challenge of recombinant immunotoxin expression. Biomedicines 2019; 7 (02) E38
  • 104 Jiang H, Cai J, Zhu J. Biotechnological Pharmaceutics. 1st ed. Beijing: Science Publisher; 2017
  • 105 Jiang H, Xie Y, Burnette A. , et al. Purification of clinical-grade disulfide stabilized antibody fragment variable--Pseudomonas exotoxin conjugate (dsFv-PE38) expressed in Escherichia coli. Appl Microbiol Biotechnol 2013; 97 (02) 621-632
  • 106 Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 2012; 30 (05) 1158-1170
  • 107 Hu Y, Zhang L, Wu R. , et al. Specific killing of CCR9 high-expressing acute T lymphocytic leukemia cells by CCL25 fused with PE38 toxin. Leuk Res 2011; 35 (09) 1254-1260
  • 108 Suwanpatcharakul M, Pakdeecharoen C, Visuttitewin S, Pesirikan N, Chauvatcharin S, Pongtharangkul T. Process optimization for an industrial-scale production of Diphtheria toxin by Corynebacterium diphtheriae PW8. Biologicals 2016; 44 (06) 534-539
  • 109 Tran M, Van C, Barrera DJ. , et al. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 2013; 110 (01) E15-E22
  • 110 Rasala BA, Mayfield SP. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2011; 2 (01) 50-54
  • 111 Tran M, Henry RE, Siefker D. , et al. Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng 2013; 110 (11) 2826-2835
  • 112 Lange MJ, Lyddon TD, Johnson MC. Diphtheria toxin A-resistant cell lines enable robust production and evaluation of DTA-encoding lentiviruses. Sci Rep 2019; 9 (01) 8985
  • 113 Pirzer T, Becher KS, Rieker M, Meckel T, Mootz HD, Kolmar H. Generation of potent anti-HER1/2 immunotoxins by protein ligation using split inteins. ACS Chem Biol 2018; 13 (08) 2058-2066
  • 114 Yu Y, Li J, Zhu X. , et al. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential. Int J Nanomedicine 2017; 12: 1969-1983
  • 115 Li T, Qi S, Unger M. , et al. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep 2016; 6: 27055
  • 116 Behdani M, Zeinali S, Karimipour M. , et al. Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. N Biotechnol 2013; 30 (02) 205-209
  • 117 Hall PD, Sinha D, Frankel AE. Fresh frozen plasma and platelet concentrates may increase plasma anti-diphtheria toxin IgG concentrations: Implications for diphtheria fusion protein therapy. Cancer Immunol Immunother 2006; 55 (08) 928-932
  • 118 Woo JH, Lee YJ, Neville DM, Frankel AE. Pharmacology of anti-CD3 diphtheria immunotoxin in CD3 positive T-cell lymphoma trials. Methods Mol Biol 2010; 651: 157-175
  • 119 Barta SK, Zou Y, Schindler J. , et al. Synergy of sequential administration of a deglycosylated ricin A chain-containing combined anti-CD19 and anti-CD22 immunotoxin (Combotox) and cytarabine in a murine model of advanced acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53 (10) 1999-2003
  • 120 Schnell R, Staak O, Borchmann P. , et al. A phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin's and non-Hodgkin's lymphoma. Clin Cancer Res 2002; 8 (06) 1779-1786
  • 121 Zhu S, Liu Y, Wang PC, Gu X, Shan L. Recombinant immunotoxin therapy of glioblastoma: smart design, key findings, and specific challenges. BioMed Res Int 2017; 2017: 7929286