Semin Reprod Med 2019; 37(02): 064-070
DOI: 10.1055/s-0039-3400462
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Roles of the Amygdala Kisspeptin System

Edouard G. A. Mills
1   Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
,
Kevin T. O'Byrne
2   Department of Anatomy, Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
,
Alexander N. Comninos
1   Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
3   Department of Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
17 December 2019 (online)

Abstract

The hypothalamic hormone kisspeptin (encoded by the KISS1/kiss1 gene) is the master regulator of the reproductive axis with its role in controlling gonadotrophin hormone secretion now well characterized. However, identification of kisspeptin and its cognate receptor expression within the amygdala, a key limbic brain region whose functions contribute to a broad range of physiological and behavioral processes, has heightened interest concerning kisspeptins' role in the broader aspects of reproductive physiology. In this review, we detail the important developments and key studies examining the emerging functions of this kisspeptin population. These studies provide novel advances in our understanding of the mechanisms controlling reproductive neuroendocrinology by defining the crucial role of the amygdala kisspeptin system in modulating pubertal timing, reproductive hormone secretion, and pulsatility, as well as its influence in governing-related behaviors. To this end, the role of the amygdala kisspeptin system in integrating reproductive hormone secretion with behavior sheds new light onto the potential use of kisspeptin-based therapeutics for reproductive and related psychosexual disorders.

 
  • References

  • 1 de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003; 100 (19) 10972-10976
  • 2 Seminara SB, Messager S, Chatzidaki EE. , et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349 (17) 1614-1627
  • 3 Topaloglu AK, Tello JA, Kotan LD. , et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 2012; 366 (07) 629-635
  • 4 Teles MG, Bianco SDC, Brito VN. , et al. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 2008; 358 (07) 709-715
  • 5 Clarkson J, d'Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol 2009; 21 (08) 673-682
  • 6 Gottsch ML, Cunningham MJ, Smith JT. , et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004; 145 (09) 4073-4077
  • 7 Irwig MS, Fraley GS, Smith JT. , et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 2004; 80 (04) 264-272
  • 8 Lee DK, Nguyen T, O'Neill GP. , et al. Discovery of a receptor related to the galanin receptors. FEBS Lett 1999; 446 (01) 103-107
  • 9 Kauffman AS, Gottsch ML, Roa J. , et al. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 2007; 148 (04) 1774-1783
  • 10 Cravo RM, Margatho LO, Osborne-Lawrence S. , et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2011; 173: 37-56
  • 11 Kim J, Semaan SJ, Clifton DK, Steiner RA, Dhamija S, Kauffman AS. Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 2011; 152 (05) 2020-2030
  • 12 Pineda R, Plaisier F, Millar RP, Ludwig M. Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology 2017; 104 (03) 223-238
  • 13 Muir AI, Chamberlain L, Elshourbagy NA. , et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 2001; 276 (31) 28969-28975
  • 14 Kotani M, Detheux M, Vandenbogaerde A. , et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276 (37) 34631-34636
  • 15 Sah P, Faber ESL, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev 2003; 83 (03) 803-834
  • 16 Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature 2015; 517 (7534): 284-292
  • 17 Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 2002; 3 (07) 563-573
  • 18 Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci 2009; 10 (06) 423-433
  • 19 Feinstein JS, Adolphs R, Damasio A, Tranel D. The human amygdala and the induction and experience of fear. Curr Biol 2011; 21 (01) 34-38
  • 20 Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005; 48 (02) 175-187
  • 21 Jayasena CN, Abbara A, Veldhuis JD. , et al. Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of Kisspeptin-54. J Clin Endocrinol Metab 2014; 99 (06) E953-E961
  • 22 Sonigo C, Bouilly J, Carré N. , et al. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest 2012; 122 (10) 3791-3795
  • 23 George JT, Veldhuis JD, Tena-Sempere M, Millar RP, Anderson RA. Exploring the pathophysiology of hypogonadism in men with type 2 diabetes: kisspeptin-10 stimulates serum testosterone and LH secretion in men with type 2 diabetes and mild biochemical hypogonadism. Clin Endocrinol (Oxf) 2013; 79 (01) 100-104
  • 24 Jayasena CN, Abbara A, Comninos AN. , et al. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J Clin Invest 2014; 124 (08) 3667-3677
  • 25 Mills EGA, Dhillo WS, Comninos AN. Kisspeptin and the control of emotions, mood and reproductive behaviour. J Endocrinol 2018; 239 (01) R1-R12
  • 26 Comninos AN, Dhillo WS. Emerging roles of kisspeptin in sexual and emotional brain processing. Neuroendocrinology 2018; 106 (02) 195-202
  • 27 Yang L, Comninos AN, Dhillo WS. Intrinsic links among sex, emotion, and reproduction. Cell Mol Life Sci 2018; 75 (12) 2197-2210
  • 28 Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 2003; 4 (07) 551-562
  • 29 Aggarwal S, Tang C, Sing K, Kim HW, Millar RP, Tello JA. Medial amygdala Kiss1 neurons mediate female pheromone stimulation of LH in male mice. Neuroendocrinology 2019; 108 (03) 172-189
  • 30 Yeo SH, Kyle V, Morris PG. , et al. Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse. J Neuroendocrinol 2016 28(11):
  • 31 Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010; 65 (06) 768-779
  • 32 Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2010; 68 (05) 815-834
  • 33 Yeo SH, Kyle V, Blouet C, Jones S, Colledge WH. Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS One 2019; 14 (03) e0213927
  • 34 Sakamoto K, Wakabayashi Y, Yamamura T. , et al. A population of kisspeptin/neurokinin B neurons in the arcuate nucleus may be the central target of the male effect phenomenon in goats. PLoS One 2013; 8 (11) e81017
  • 35 Dulac C, Kimchi T. Neural mechanisms underlying sex-specific behaviors in vertebrates. Curr Opin Neurobiol 2007; 17 (06) 675-683
  • 36 Mhaouty-Kodja S, Naulé L, Capela D. Sexual behavior: from hormonal regulation to endocrine disruption. Neuroendocrinology 2018; 107 (04) 400-416
  • 37 Newman SW. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 1999; 877: 242-257
  • 38 Rasia-Filho AA, Londero RG, Achaval M. Functional activities of the amygdala: an overview. J Psychiatry Neurosci 2000; 25 (01) 14-23
  • 39 Cao J, Patisaul HB. Sex-specific expression of estrogen receptors α and β and Kiss1 in the postnatal rat amygdala. J Comp Neurol 2013; 521 (02) 465-478
  • 40 Stephens SBZ, Chahal N, Munaganuru N, Parra RA, Kauffman AS. Estrogen stimulation of Kiss1 expression in the medial amygdala involves estrogen receptor-α but not estrogen receptor-β. Endocrinology 2016; 157 (10) 4021-4031
  • 41 Lima LB, Haubenthal FT, Silveira MA. , et al. Conspecific odor exposure predominantly activates non-kisspeptin cells in the medial nucleus of the amygdala. Neurosci Lett 2018; 681: 12-16
  • 42 Somogyi P, Tamás G, Lujan R, Buhl EH. Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 1998; 26 (2-3): 113-135
  • 43 Di Giorgio NP, Semaan SJ, Kim J. , et al. Impaired GABAB receptor signaling dramatically up-regulates Kiss1 expression selectively in nonhypothalamic brain regions of adult but not prepubertal mice. Endocrinology 2014; 155 (03) 1033-1044
  • 44 Stephens SBZ, Di Giorgio NP, Liaw RB. , et al. Estradiol-dependent and -independent stimulation of KIss1 expression in the amygdala, BNST, and lateral septum of mice. Endocrinology 2018; 159 (09) 3389-3402
  • 45 Clarkson J, Han SY, Piet R. , et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 2017; 114 (47) E10216-E10223
  • 46 Comninos AN, Anastasovska J, Sahuri-Arisoylu M. , et al. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct 2016; 221 (04) 2035-2047
  • 47 Gresham R, Li S, Adekunbi DA, Hu M, Li XF, O'Byrne KT. Kisspeptin in the medial amygdala and sexual behavior in male rats. Neurosci Lett 2016; 627: 13-17
  • 48 Lass G, Li XF, de Burgh RA. , et al. Optogenetic stimulation of kisspeptin neurones within the posterodorsal medial amygdala increases LH pulse frequency in female mice. bioRxiv 2018; DOI: https://doi.org/10.1101/497164.
  • 49 Stephens SBZ, Raper J, Bachevalier J, Wallen K. Neonatal amygdala lesions advance pubertal timing in female rhesus macaques. Psychoneuroendocrinology 2015; 51: 307-317
  • 50 Li XF, Hu MH, Hanley BP. , et al. The posterodorsal medial amygdala regulates the timing of puberty onset in female rats. Endocrinology 2015; 156 (10) 3725-3736
  • 51 Bar-Sela M, Critchlow V. Delayed puberty following electrical stimulation of amygdala in female rats. Am J Physiol 1966; 211 (05) 1103-1107
  • 52 Adekunbi DA, Li XF, Li S. , et al. Role of amygdala kisspeptin in pubertal timing in female rats. PLoS One 2017; 12 (08) e0183596
  • 53 Deardorff J, Berry-Millett R, Rehkopf D, Luecke E, Lahiff M, Abrams B. Maternal pre-pregnancy BMI, gestational weight gain, and age at menarche in daughters. Matern Child Health J 2013; 17 (08) 1391-1398
  • 54 Hounsgaard ML, Håkonsen LB, Vested A. , et al. Maternal pre-pregnancy body mass index and pubertal development among sons. Andrology 2014; 2 (02) 198-204
  • 55 Hrabovszky E, Molnár CS, Nagy R. , et al. Glutamatergic and GABAergic innervation of human gonadotropin-releasing hormone-I neurons. Endocrinology 2012; 153 (06) 2766-2776
  • 56 Adekunbi DA, Li XF, Lass G. , et al. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. J Neuroendocrinol 2018; 30 (03) e12572
  • 57 Comninos AN, Wall MB, Demetriou L. , et al. Kisspeptin modulates sexual and emotional brain processing in humans. J Clin Invest 2017; 127 (02) 709-719
  • 58 Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci 2004; 7 (10) 1048-1054
  • 59 Hamann S, Herman RA, Nolan CL, Wallen K. Men and women differ in amygdala response to visual sexual stimuli. Nat Neurosci 2004; 7 (04) 411-416
  • 60 Comninos AN, Demetriou L, Wall MB. , et al. Modulations of human resting brain connectivity by kisspeptin enhance sexual and emotional functions. JCI Insight 2018; 3 (20) 121958
  • 61 Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala-frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci 2007; 2 (04) 303-312
  • 62 Chase HW, Moses-Kolko EL, Zevallos C, Wisner KL, Phillips ML. Disrupted posterior cingulate-amygdala connectivity in postpartum depressed women as measured with resting BOLD fMRI. Soc Cogn Affect Neurosci 2014; 9 (08) 1069-1075
  • 63 Sander K, Frome Y, Scheich H. FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying. Hum Brain Mapp 2007; 28 (10) 1007-1022