Clin Colon Rectal Surg 2020; 33(02): 073-081
DOI: 10.1055/s-0039-3400476
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Laboratory Tests for the Diagnosis of Clostridium difficile

Karen C. Carroll
1   Division of Medical Microbiology, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland
,
Masako Mizusawa
2   Section of Infectious Diseases, Department of Internal Medicine, University of Missouri, Kansas City, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
25 February 2020 (online)

Abstract

Clostridium (reclassified as “Clostridioides”) difficile is an anaerobic, gram-positive bacterium that causes significant disease through elaboration of two potent toxins in patients whose normal gut microbiota has been altered through antimicrobial or chemotherapeutic agents (dysbiosis). The optimum method of laboratory diagnosis is still somewhat controversial. Recent practice guidelines published by professional societies recommend a two-step approach beginning with a test for glutamate dehydrogenase (GDH), followed by a toxin test and/or a nucleic acid test. Alternatively, in institutions where established clinical algorithms guide testing, a nucleic acid test alone is acceptable. Nucleic acid tests are the methods of choice in approximately 50% of laboratories in the United States. These tests are considered as the most sensitive methods for detection of C. difficile in stool and are the least specific. Because of the lower specificity with nucleic acid tests, some clinicians believe that toxin enzyme immunoassays are better predictors of disease, despite their known poor performance in certain patient populations. This review will discuss the advantages and disadvantages of the currently available test methods for the diagnosis of C. difficile with a brief mention of some novel assays that are currently in clinical trials.

 
  • References

  • 1 Gerding DN. Global epidemiology of Clostridium difficile infection in 2010. Infect Control Hosp Epidemiol 2010; 31 (Suppl. 01) S32-S34
  • 2 Lessa FC, Mu Y, Bamberg WM. , et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015; 372 (09) 825-834
  • 3 Crobach MJT, Planche T, Eckert C. , et al. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect 2016; 22 (Suppl. 04) S63-S81
  • 4 McDonald LC, Gerding DN, Johnson S. , et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 2018; 66 (07) e1-e48
  • 5 Fang FC, Polage CR, Wilcox MH. Point-counterpoint: what is the optimal approach for detection of Clostridium difficile infection?. J Clin Microbiol 2017; 55 (03) 670-680
  • 6 Burnham CAD, Carroll KC. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev 2013; 26 (03) 604-630
  • 7 Bliss DZ, Johnson S, Clabots CR, Savik K, Gerding DN. Comparison of cycloserine-cefoxitin-fructose agar (CCFA) and taurocholate-CCFA for recovery of Clostridium difficile during surveillance of hospitalized patients. Diagn Microbiol Infect Dis 1997; 29 (01) 1-4
  • 8 Mundy LS, Shanholtzer CJ, Willard KE, Gerding DN, Peterson LR. Laboratory detection of Clostridium difficile. A comparison of media and incubation systems. Am J Clin Pathol 1995; 103 (01) 52-56
  • 9 Hink T, Burnham CAD, Dubberke ER. A systematic evaluation of methods to optimize culture-based recovery of Clostridium difficile from stool specimens. Anaerobe 2013; 19: 39-43
  • 10 Tyrrell KL, Citron DM, Leoncio ES, Merriam CV, Goldstein EJ. Evaluation of cycloserine-cefoxitin fructose agar (CCFA), CCFA with horse blood and taurocholate, and cycloserine-cefoxitin mannitol broth with taurocholate and lysozyme for recovery of Clostridium difficile isolates from fecal samples. J Clin Microbiol 2013; 51 (09) 3094-3096
  • 11 Housman ST, Banevicius MA, Lamb LM, Nicolau DP. Isolation and quantitation of Clostridium difficile in aqueous and fecal matter using two types of selective media. J Microbiol Immunol Infect 2016; 49 (03) 445-447
  • 12 Perry JD. A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin Microbiol Rev 2017; 30 (02) 449-479
  • 13 Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med 1978; 298 (10) 531-534
  • 14 Chang TW, Lauermann M, Bartlett JG. Cytotoxicity assay in antibiotic-associated colitis. J Infect Dis 1979; 140 (05) 765-770
  • 15 Tichota-Lee J, Jaqua-Stewart MJ, Benfield D, Simmons JL, Jaqua RA. Effect of age on the sensitivity of cell cultures to Clostridium difficile toxin. Diagn Microbiol Infect Dis 1987; 8 (04) 203-214
  • 16 Planche TD, Davies KA, Coen PG. , et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis 2013; 13 (11) 936-945
  • 17 Reigadas E, Alcalá L, Marín M. , et al. Clinical significance of direct cytotoxicity and toxigenic culture in Clostridium difficile infection. Anaerobe 2016; 37: 38-42
  • 18 Lyras D, O'Connor JR, Howarth PM. , et al. Toxin B is essential for virulence of Clostridium difficile . Nature 2009; 458 (7242): 1176-1179
  • 19 Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP. The role of toxin A and toxin B in Clostridium difficile infection. Nature 2010; 467 (7316): 711-713
  • 20 Åkerlund T, Svenungsson B, Lagergren A, Burman LG. Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J Clin Microbiol 2006; 44 (02) 353-358
  • 21 Song L, Zhao M, Duffy DC. , et al. Development and validation of digital Enzyme-Linked Immunosorbent assays for ultrasensitive detection and quantification of Clostridium difficile toxins in stool. J Clin Microbiol 2015; 53 (10) 3204-3212
  • 22 Rissin DM, Kan CW, Campbell TG. , et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 2010; 28 (06) 595-599
  • 23 Banz A, Lantz A, Riou B. , et al. Sensitivity of single-molecule array assays for detection of Clostridium difficile toxins in comparison to conventional laboratory testing algorithms. J Clin Microbiol 2018; 56 (08) e004512-e004518
  • 24 Sandlund J, Bartolome A, Bishop J. , et al. Ultrasensitive detection of Clostridium difficile toxins A and B using single molecule counting technology. Abstracts of the 2018 American Society for Microbiology Microbe Meeting, Atlanta, GA
  • 25 Bartolome A, Almazan A, Abusali S. , et al. Preliminary performance evaluation of the automated Singulex Clarity C. diff toxins A/B assay and comparison to PCR and multistep algorithms. Abstracts of the 2018 ECCMID meeting, Madrid Spain
  • 26 Kyne L, Warny M, Qamar A, Kelly CP. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 2000; 342 (06) 390-397
  • 27 Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol 2010; 31 (01) 21-27
  • 28 Arimoto J, Horita N, Kato S. , et al. Diagnostic test accuracy of glutamate dehydrogenase for Clostridium difficile: systematic review and meta-analysis. Sci Rep 2016; 6: 29754
  • 29 Shetty N, Wren MWD, Coen PG. The role of glutamate dehydrogenase for the detection of Clostridium difficile in faecal samples: a meta-analysis. J Hosp Infect 2011; 77 (01) 1-6
  • 30 Jacobs J, Rudensky B, Dresner J. , et al. Comparison of four laboratory tests for diagnosis of Clostridium difficile-associated diarrhea. Eur J Clin Microbiol Infect Dis 1996; 15 (07) 561-566
  • 31 Terveer EM, Crobach MJT, Sanders IMJG, Vos MC, Verduin CM, Kuijper EJ. Detection of Clostridium difficile in feces of asymptomatic patients admitted to the hospital. J Clin Microbiol 2017; 55 (02) 403-411
  • 32 Walkty A, Lagacé-Wiens PRS, Manickam K. , et al. Evaluation of an algorithmic approach in comparison with the Illumigene assay for laboratory diagnosis of Clostridium difficile infection. J Clin Microbiol 2013; 51 (04) 1152-1157
  • 33 Carroll KC, Buchan BW, Tan S. , et al. Multicenter evaluation of the Verigene Clostridium difficile nucleic acid assay. J Clin Microbiol 2013; 51 (12) 4120-4125
  • 34 Tenover FC, Novak-Weekley S, Woods CW. , et al. Impact of strain type on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol 2010; 48 (10) 3719-3724
  • 35 Goldenberg SD, Gumban M, Hall A, Patel A, French GL. Lack of effect of strain type on detection of toxigenic Clostridium difficile by glutamate dehydrogenase and polymerase chain reaction. Diagn Microbiol Infect Dis 2011; 70 (03) 417-419
  • 36 Kato N, Ou CY, Kato H. , et al. Detection of toxigenic Clostridium difficile in stool specimens by the polymerase chain reaction. J Infect Dis 1993; 167 (02) 455-458
  • 37 Gumerlock PH, Tang YJ, Meyers FJ, Silva Jr J. Use of the polymerase chain reaction for the specific and direct detection of Clostridium difficile in human feces. Rev Infect Dis 1991; 13 (06) 1053-1060
  • 38 Stamper PD, Babiker W, Alcabasa R. , et al. Evaluation of a new commercial TAQMAN PCR assay for direct detection of the clostridium difficile toxin B gene in clinical stool specimens. J Clin Microbiol 2009; 47 (12) 3846-3850
  • 39 Calderaro A, Buttrini M, Martinelli M. , et al. Comparative analysis of different methods to detect Clostridium difficile infection. New Microbiol 2013; 36 (01) 57-63
  • 40 van den Berg RJ, Bruijnesteijn van Coppenraet LS, Gerritsen H-J, Endtz HP, van der Vorm ER, Kuijper EJ. Prospective multicenter evaluation of a new immunoassay and real-time PCR for rapid diagnosis of Clostridium difficile-associated diarrhea in hospitalized patients. J Clin Microbiol 2005; 43 (10) 5338-5340
  • 41 Novak-Weekley SM, Marlowe EM, Miller JM. , et al. Clostridium difficile testing in the clinical laboratory by use of multiple testing algorithms. J Clin Microbiol 2010; 48 (03) 889-893
  • 42 Sharp SE, Ruden LO, Pohl JC, Hatcher PA, Jayne LM, Ivie WM. Evaluation of the C.Diff Quik Chek Complete Assay, a new glutamate dehydrogenase and A/B toxin combination lateral flow assay for use in rapid, simple diagnosis of Clostridium difficile disease. J Clin Microbiol 2010; 48 (06) 2082-2086
  • 43 Culbreath K, Ager E, Nemeyer RJ, Kerr A, Gilligan PH. Evolution of testing algorithms at a university hospital for detection of Clostridium difficile infections. J Clin Microbiol 2012; 50 (09) 3073-3076
  • 44 Bartsch SM, Umscheid CA, Nachamkin I, Hamilton K, Lee BY. Comparing the economic and health benefits of different approaches to diagnosing Clostridium difficile infection. Clin Microbiol Infect 2015; 21 (01) 77.e1-77.e9
  • 45 Guinta MM, Bunnell K, Harrington A, Bleasdale S, Danziger L, Wenzler E. Clinical and economic impact of the introduction of a nucleic acid amplification assay for Clostridium difficile. Ann Clin Microbiol Antimicrob 2017; 16 (01) 77-82
  • 46 Currie B. Real-time PCR testing for CDI improves outcomes and reduces costs. MLO Med Lab Obs 2009; 41 (10) 18-20
  • 47 Schroeder LF, Robilotti E, Peterson LR, Banaei N, Dowdy DW. Economic evaluation of laboratory testing strategies for hospital-associated Clostridium difficile infection. J Clin Microbiol 2014; 52 (02) 489-496
  • 48 Verhoye E, Vandecandelaere P, De Beenhouwer H. , et al; Bilulu Study Group. A hospital-level cost-effectiveness analysis model for toxigenic Clostridium difficile detection algorithms. J Hosp Infect 2015; 91 (02) 123-128
  • 49 Polage CR, Gyorke CE, Kennedy MA. , et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern Med 2015; 175 (11) 1792-1801
  • 50 Humphries RM, Uslan DZ, Rubin Z. Performance of Clostridium difficile toxin enzyme immunoassay and nucleic acid amplification tests stratified by patient disease severity. J Clin Microbiol 2013; 51 (03) 869-873
  • 51 Kaltsas A, Simon M, Unruh LH. , et al. Clinical and laboratory characteristics of Clostridium difficile infection in patients with discordant diagnostic test results. J Clin Microbiol 2012; 50 (04) 1303-1307
  • 52 Erb S, Frei R, Strandén AM, Dangel M, Tschudin-Sutter S, Widmer AF. Low sensitivity of fecal toxin A/B enzyme immunoassay for diagnosis of Clostridium difficile infection in immunocompromised patients. Clin Microbiol Infect 2015; 21 (11) 998.e9-998.e15
  • 53 Dubberke ER, Han Z, Bobo L. , et al. Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections. J Clin Microbiol 2011; 49 (08) 2887-2893
  • 54 Buckel WR, Avdic E, Carroll KC, Gunaseelan V, Hadhazy E, Cosgrove SE. Gut check: Clostridium difficile testing and treatment in the molecular testing era. Infect Control Hosp Epidemiol 2015; 36 (02) 217-221
  • 55 Garvey MI, Bradley CW, Wilkinson MAC, Holden E. Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection?. Antimicrob Resist Infect Control 2017; 6: 127-134
  • 56 Kamboj M, Brite J, McMillen T. , et al. Potential of real-time PCR threshold cycle (CT) to predict presence of free toxin and clinically relevant C. difficile infection (CDI) in patients with cancer. J Infect 2018; 76 (04) 369-375
  • 57 Anikst VE, Gaur RL, Schroeder LF, Banaei N. Organism burden, toxin concentration, and lactoferrin concentration do not distinguish between clinically significant and nonsignificant diarrhea in patients with Clostridium difficile . Diagn Microbiol Infect Dis 2016; 84 (04) 343-346
  • 58 Crobach MJT, Duszenko N, Terveer EM, Verduin CM, Kuijper EJ. Nucleic acid amplification test quantitation as a predictor of toxin presence in Clostridium difficile infection. J Clin Microbiol 2018; 56 (03) e01316-e01317
  • 59 Popiel KY, Gheorghe R, Eastmond J, Miller MA. Usefulness of adjunctive fecal calprotectin and serum procalcitonin in individuals positive for Clostridium difficile toxin gene by PCR Assay. J Clin Microbiol 2015; 53 (11) 3667-3669
  • 60 Crobach MJT, Baktash A, Duszenko N, Kuijper EJ. Diagnostic guidance for C. difficile infections. Adv Exp Med Biol 2018; 1050: 27-44
  • 61 Truong CY, Gombar S, Wilson R. , et al. Real-time electronic tracking of diarrheal episodes and laxative therapy enables verification of Clostridium difficile clinical testing criteria and reduction of Clostridium difficile infection rates. J Clin Microbiol 2017; 55 (05) 1276-1284
  • 62 Mizusawa M, Rock C, Kauffman C. , et al. Impact of test utilization and patient outcome of hard-stops at order entry for Clostridium difficile nucleic acid amplification testing. Oral session presented at the American Society for Microbiology, New Orleans, LA, 2017
  • 63 Barbut F, Braun M, Burghoffer B, Lalande V, Eckert C. Rapid detection of toxigenic strains of Clostridium difficile in diarrheal stools by real-time PCR. J Clin Microbiol 2009; 47 (04) 1276-1277
  • 64 Eastwood K, Else P, Charlett A, Wilcox M. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol 2009; 47 (10) 3211-3217
  • 65 Stamper PD, Alcabasa R, Aird D. , et al. Comparison of a commercial real-time PCR assay for tcdB detection to a cell culture cytotoxicity assay and toxigenic culture for direct detection of toxin-producing Clostridium difficile in clinical samples. J Clin Microbiol 2009; 47 (02) 373-378
  • 66 Hart J, Putsathit P, Knight DR, Sammels L, Riley TV, Keil A. Clostridium difficile infection diagnosis in a paediatric population: comparison of methodologies. Eur J Clin Microbiol Infect Dis 2014; 33 (09) 1555-1564
  • 67 Snell H, Ramos M, Longo S, John M, Hussain Z. Performance of the TechLab C. DIFF CHEK-60 enzyme immunoassay (EIA) in combination with the C. difficile Tox A/B II EIA kit, the Triage C. difficile panel immunoassay, and a cytotoxin assay for diagnosis of Clostridium difficile-associated diarrhea. J Clin Microbiol 2004; 42 (10) 4863-4865
  • 68 Kawada M, Annaka M, Kato H. , et al. Evaluation of a simultaneous detection kit for the glutamate dehydrogenase antigen and toxin A/B in feces for diagnosis of Clostridium difficile infection. J Infect Chemother 2011; 17 (06) 807-811
  • 69 Swindells J, Brenwald N, Reading N, Oppenheim B. Evaluation of diagnostic tests for Clostridium difficile infection. J Clin Microbiol 2010; 48 (02) 606-608
  • 70 Bruins MJ, Verbeek E, Wallinga JA, Bruijnesteijn van Coppenraet LE, Kuijper EJ, Bloembergen P. Evaluation of three enzyme immunoassays and a loop-mediated isothermal amplification test for the laboratory diagnosis of Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 2012; 31 (11) 3035-3039
  • 71 Barkin JA, Nandi N, Miller N, Grace A, Barkin JS, Sussman DA. Superiority of the DNA amplification assay for the diagnosis of C. difficile infection: a clinical comparison of fecal tests. Dig Dis Sci 2012; 57 (10) 2592-2599
  • 72 Benedek O, Podbielski A, Warnke P. Laboratory experience with the Liaison Analyzer in the diagnosis of Clostridium difficile-associated diarrhea. Eur J Microbiol Immunol (Bp) 2016; 6 (03) 215-218
  • 73 Shin B-M, Kuak EY, Lee EJ, Songer JG. Algorithm combining toxin immunoassay and stool culture for diagnosis of Clostridium difficile infection. J Clin Microbiol 2009; 47 (09) 2952-2956
  • 74 Shin B-M, Lee E-J, Kuak E-Y, Yoo SJ. Comparison of VIDAS CDAB and CDA immunoassay for the detection of Clostridium difficile in a tcdA- tcdB+ C. difficile prevalent area. Anaerobe 2009; 15 (06) 266-269
  • 75 Makristathis A, Zeller I, Mitteregger D, Kundi M, Hirschl AM. Comprehensive evaluation of chemiluminescent immunoassays for the laboratory diagnosis of Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 2017; 36 (07) 1253-1259
  • 76 Kim H, Jeong SH, Kim M, Lee Y, Lee K. Detection of Clostridium difficile toxin A/B genes by multiplex real-time PCR for the diagnosis of C. difficile infection. J Med Microbiol 2012; 61 (Pt 2): 274-277
  • 77 Kim H, Kim WH, Kim M, Jeong SH, Lee K. Evaluation of a rapid membrane enzyme immunoassay for the simultaneous detection of glutamate dehydrogenase and toxin for the diagnosis of Clostridium difficile infection. Ann Lab Med 2014; 34 (03) 235-239
  • 78 Shin S, Kim M, Kim M. , et al. Evaluation of the Xpert Clostridium difficile assay for the diagnosis of Clostridium difficile infection. Ann Lab Med 2012; 32 (05) 355-358
  • 79 Sloan LM, Duresko BJ, Gustafson DR, Rosenblatt JE. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol 2008; 46 (06) 1996-2001
  • 80 Wren MWD, Kinson R, Sivapalan M, Shemko M, Shetty NR. Detection of Clostridium difficile infection: a suggested laboratory diagnostic algorithm. Br J Biomed Sci 2009; 66 (04) 175-179
  • 81 Leitner E, Einetter M, Grisold AJ, Marth E, Feierl G. Evaluation of the BD MAX C diff assay for the detection of the toxin B gene of Clostridium difficile out of faecal specimens. Diagn Microbiol Infect Dis 2013; 76 (03) 390-391
  • 82 Ota KV, McGowan KL. Clostridium difficile testing algorithms using glutamate dehydrogenase antigen and C. difficile toxin enzyme immunoassays with C. difficile nucleic acid amplification testing increase diagnostic yield in a tertiary pediatric population. J Clin Microbiol 2012; 50 (04) 1185-1188
  • 83 van den Berg RJ, Vaessen N, Endtz HP, Schülin T, van der Vorm ER, Kuijper EJ. Evaluation of real-time PCR and conventional diagnostic methods for the detection of Clostridium difficile-associated diarrhoea in a prospective multicentre study. J Med Microbiol 2007; 56 (Pt 1): 36-42
  • 84 Shin B-M, Yoo SM, Shin WC. Evaluation of Xpert C. difficile, BD MAX C diff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile Assays for Direct Detection of Toxigenic Clostridium difficile in Stool Specimens. Ann Lab Med 2016; 36 (02) 131-137
  • 85 Gilbreath JJ, Verma P, Abbott AN, Butler-Wu SM. Comparison of the Verigene Clostridium difficile, Simplexa C. difficile Universal Direct, BD MAX Cdiff, and Xpert C. difficile assays for the detection of toxigenic C. difficile . Diagn Microbiol Infect Dis 2014; 80 (01) 13-18
  • 86 Lawson SK, Chung D, Das S. , et al. Analytical and workflow evaluation of the ARIES sample-to-result molecular assay for Clostridium difficile . Ann Clin Lab Sci 2018; 48 (02) 168-176
  • 87 Eckert C, Holscher E, Petit A, Lalande V, Barbut F. Molecular test based on isothermal helicase-dependent amplification for detection of the Clostridium difficile toxin A gene. J Clin Microbiol 2014; 52 (07) 2386-2389
  • 88 Vanpoucke H, De Baere T, Claeys G, Vaneechoutte M, Verschraegen G. Evaluation of six commercial assays for the rapid detection of Clostridium difficile toxin and/or antigen in stool specimens. Clin Microbiol Infect 2001; 7 (02) 55-64
  • 89 de Jong E, de Jong AS, Bartels CJM, van der Rijt-van den Biggelaar C, Melchers WJ, Sturm PD. Clinical and laboratory evaluation of a real-time PCR for Clostridium difficile toxin A and B genes. Eur J Clin Microbiol Infect Dis 2012; 31 (09) 2219-2225
  • 90 Le Guern R, Herwegh S, Grandbastien B, Courcol R, Wallet F. Evaluation of a new molecular test, the BD Max Cdiff, for detection of toxigenic Clostridium difficile in fecal samples. J Clin Microbiol 2012; 50 (09) 3089-3090
  • 91 de Boer RF, Wijma JJ, Schuurman T. , et al. Evaluation of a rapid molecular screening approach for the detection of toxigenic Clostridium difficile in general and subsequent identification of the tcdC Δ117 mutation in human stools. J Microbiol Methods 2010; 83 (01) 59-65
  • 92 Karre T, Sloan L, Patel R, Mandrekar J, Rosenblatt J. Comparison of two commercial molecular assays to a laboratory-developed molecular assay for diagnosis of Clostridium difficile infection. J Clin Microbiol 2011; 49 (02) 725-727
  • 93 Selvaraju SB, Gripka M, Estes K, Nguyen A, Jackson MA, Selvarangan R. Detection of toxigenic Clostridium difficile in pediatric stool samples: an evaluation of Quik Check Complete Antigen assay, BD GeneOhm Cdiff PCR, and ProGastro Cd PCR assays. Diagn Microbiol Infect Dis 2011; 71 (03) 224-229
  • 94 Paitan Y, Miller-Roll T, Adler A. Comparative performance study of six commercial molecular assays for rapid detection of toxigenic Clostridium difficile . Clin Microbiol Infect 2017; 23 (08) 567-572
  • 95 Antonara S, Daly J, Greene W, Leber A. A large scale clinical evaluation of the AmpliVue and Illumigene molecular tests for the identification of Clostridium difficile-associated diarrhea in adult and pediatric patients. Diagn Microbiol Infect Dis 2015; 82 (04) 265-268
  • 96 Beck ET, Buchan BW, Riebe KM. , et al. Multicenter evaluation of the Quidel Lyra Direct C. difficile nucleic acid amplification assay. J Clin Microbiol 2014; 52 (06) 1998-2002
  • 97 FDA. 510 (k) Substantial Equivalence Determination Decision Summary, Solana C difficile Assay, 2017. Available at: https://www.accessdata.fda.gov/cdrh_docs/reviews/K170491.pdf . Accessed October 30, 2019
  • 98 Peterson LR, Young SA, Davis Jr TE. , et al. Evaluation of the cobas Cdiff test for detection of toxigenic Clostridium difficile in stool samples. J Clin Microbiol 2017; 55 (12) 3426-3436
  • 99 FDA. 510 (k) Substantial Equivalence Determination Decision Summary, ICEPlex C. difficile Kit on the ICEPlex System, 2013. Available at: https://www.accessdata.fda.gov/cdrh_docs/reviews/K132726.pdf . Accessed October 30, 2019
  • 100 Yoo J, Lee H, Park KG, Lee GD, Park YG, Park YJ. Evaluation of 3 automated real-time PCR (Xpert C. difficile assay, BD MAX Cdiff, and IMDx C. difficile for Abbott m2000 assay) for detecting Clostridium difficile toxin gene compared to toxigenic culture in stool specimens. Diagn Microbiol Infect Dis 2015; 83 (01) 7-10
  • 101 Jazmati N, Wiegel P, Ličanin B, Plum G. Evaluation of the Qiagen artus C. difficile QS-RGQ Kit for detection of Clostridium difficile Toxins A and B in clinical stool samples. J Clin Microbiol 2015; 53 (06) 1942-1944
  • 102 Morris KA, Macfarlane-Smith LR, Wilcox MH. Evaluation of the novel artus C. difficile QS-RGQ, VanR QS-RGQ and MRSA/SA QS-RGQ assays for the laboratory diagnosis of Clostridium difficile infection (CDI), and for vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) screening. Eur J Clin Microbiol Infect Dis 2017; 36 (05) 823-829
  • 103 FDA. 510(k) Substantial Equivalence Determination Decision Summary, GenePOC C. diff test, 2017. Available at: https://www.accessdata.fda.gov/cdrh_docs/reviews/K172569.pdf . Accessed October 30, 2019
  • 104 Musher DM, Manhas A, Jain P. , et al. Detection of Clostridium difficile toxin: comparison of enzyme immunoassay results with results obtained by cytotoxicity assay. J Clin Microbiol 2007; 45 (08) 2737-2739
  • 105 O'Connor D, Hynes P, Cormican M, Collins E, Corbett-Feeney G, Cassidy M. Evaluation of methods for detection of toxins in specimens of feces submitted for diagnosis of Clostridium difficile-associated diarrhea. J Clin Microbiol 2001; 39 (08) 2846-2849
  • 106 Massey V, Gregson DB, Chagla AH, Storey M, John MA, Hussain Z. Clinical usefulness of components of the Triage immunoassay, enzyme immunoassay for toxins A and B, and cytotoxin B tissue culture assay for the diagnosis of Clostridium difficile diarrhea. Am J Clin Pathol 2003; 119 (01) 45-49
  • 107 Reller ME, Alcabasa RC, Lema CA, Carroll KC. Comparison of two rapid assays for Clostridium difficile Common antigen and a C difficile toxin A/B assay with the cell culture neutralization assay. Am J Clin Pathol 2010; 133 (01) 107-109
  • 108 Mattner F, Winterfeld I, Mattner L. Diagnosing toxigenic Clostridium difficile: new confidence bounds show culturing increases sensitivity of the toxin A/B enzyme immunoassay and refute gold standards. Scand J Infect Dis 2012; 44 (08) 578-585
  • 109 Qutub MO, AlBaz N, Hawken P, Anoos A. Comparison between the two-step and the three-step algorithms for the detection of toxigenic Clostridium difficile . Indian J Med Microbiol 2011; 29 (03) 293-296