Semin Reprod Med 2019; 37(02): 093-104
DOI: 10.1055/s-0039-3400956
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Kisspeptin and Prolactin

David R. Grattan
1   Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
2   Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
,
Raphael E. Szawka
3   Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
› Author Affiliations
Further Information

Publication History

Publication Date:
17 December 2019 (online)

Abstract

The relationship between elevated prolactin and infertility has been known for a long time, but the specific mechanism by which prolactin inhibited reproduction had been uncertain. The discovery of kisspeptin has provided novel insights into how prolactin might cause infertility, with extensive evidence that elevated prolactin inhibits secretion of kisspeptin, resulting in hypogonadotropic hypogonadism, and infertility. More recent data suggest that a converse relationship might also exist, with evidence that kisspeptin influences prolactin secretion. This brief review will examine the relationship between kisspeptin and prolactin from each of these two perspectives: the well-characterized inhibitory effect of prolactin on kisspeptin neurons and the more recent concept that kisspeptin neurons are involved in the control of prolactin secretion.

 
  • References

  • 1 Everett JW. Central neural control of reproductive functions of the adenohypophysis. Physiol Rev 1964; 44: 373-431
  • 2 Evans WS, Cronin MJ, Thorner MO. Hypogonadism in hyperprolactinemia: proposed mechanisms. In: Ganong WF, Martini L. , ed. Frontiers in Neuroendocrinology. Vol 7. New York: Raven Press; 1982: 77-122
  • 3 Sarkar DK, Yen SS. Hyperprolactinemia decreases the luteinizing hormone-releasing hormone concentration in pituitary portal plasma: a possible role for beta-endorphin as a mediator. Endocrinology 1985; 116 (05) 2080-2084
  • 4 Biller BM. Hyperprolactinemia. Int J Fertil Womens Med 1999; 44 (02) 74-77
  • 5 Mah PM, Webster J. Hyperprolactinemia: etiology, diagnosis, and management. Semin Reprod Med 2002; 20 (04) 365-374
  • 6 Shibli-Rahhal A, Schlechte J. Hyperprolactinemia and infertility. Endocrinol Metab Clin North Am 2011; 40 (04) 837-846
  • 7 Fourman LT, Fazeli PK. Neuroendocrine causes of amenorrhea--an update. J Clin Endocrinol Metab 2015; 100 (03) 812-824
  • 8 Neill JD, Freeman ME, Tillson SA. Control of the proestrus surge of prolactin and luteinizing hormone secretion by estrogens in the rat. Endocrinology 1971; 89 (06) 1448-1453
  • 9 de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the Kiss1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003; 100 (19) 10972-10976
  • 10 Seminara SB, Messager S, Chatzidaki EE. , et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349 (17) 1614-1627
  • 11 McNeilly AS. Lactational control of reproduction. Reprod Fertil Dev 2001; 13 (7-8): 583-590
  • 12 Grattan DR. 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 2015; 226 (02) T101-T122
  • 13 Selmanoff M, Shu C, Petersen SL, Barraclough CA, Zoeller RT. Single cell levels of hypothalamic messenger ribonucleic acid encoding luteinizing hormone-releasing hormone in intact, castrated, and hyperprolactinemic male rats. Endocrinology 1991; 128 (01) 459-466
  • 14 Koike K, Miyake A, Aono T. , et al. Effect of prolactin on the secretion of hypothalamic GnRH and pituitary gonadotropins. Horm Res 1991; 35 (Suppl. 01) 5-12
  • 15 Smith MS. A comparison of pituitary responsiveness to luteinizing hormone-releasing hormone during lactation and the estrous cycle of the rat. Endocrinology 1978; 102 (01) 114-120
  • 16 Smith MS. Effect of pulsatile gonadotropin-releasing hormone on the release of luteinizing hormone and follicle-stimulating hormone in vitro by anterior pituitaries from lactating and cycling rats. Endocrinology 1982; 110 (03) 882-891
  • 17 Cheung CY. Prolactin suppresses luteinizing hormone secretion and pituitary responsiveness to luteinizing hormone-releasing hormone by a direct action at the anterior pituitary. Endocrinology 1983; 113 (02) 632-638
  • 18 Tortonese DJ, Brooks J, Ingleton PM, McNeilly AS. Detection of prolactin receptor gene expression in the sheep pituitary gland and visualization of the specific translation of the signal in gonadotrophs. Endocrinology 1998; 139 (12) 5215-5223
  • 19 Hodson DJ, Townsend J, Tortonese DJ. Characterization of the effects of prolactin in gonadotroph target cells. Biol Reprod 2010; 83 (06) 1046-1055
  • 20 McNatty KP, Sawers RS, McNeilly AS. A possible role for prolactin in control of steroid secretion by the human Graafian follicle. Nature 1974; 250 (5468): 653-655
  • 21 Bohnet HG, Dahlén HG, Wuttke W, Schneider HP. Hyperprolactinemic anovulatory syndrome. J Clin Endocrinol Metab 1976; 42 (01) 132-143
  • 22 Matsuzaki T, Azuma K, Irahara M, Yasui T, Aono T. Mechanism of anovulation in hyperprolactinemic amenorrhea determined by pulsatile gonadotropin-releasing hormone injection combined with human chorionic gonadotropin. Fertil Steril 1994; 62 (06) 1143-1149
  • 23 Moult PJ, Rees LH, Besser GM. Pulsatile gonadotrophin secretion in hyperprolactinaemic amenorrhoea and the response to bromocriptine therapy. Clin Endocrinol (Oxf) 1982; 16 (02) 153-162
  • 24 Lecomte P, Lecomte C, Lansac J, Gallier J, Sonier CB, Simonetta C. Pregnancy after intravenous pulsatile gonadotropin-releasing hormone in a hyperprolactinaemic woman resistant to treatment with dopamine agonists. Eur J Obstet Gynecol Reprod Biol 1997; 74 (02) 219-221
  • 25 Polson DW, Sagle M, Mason HD, Adams J, Jacobs HS, Franks S. Ovulation and normal luteal function during LHRH treatment of women with hyperprolactinaemic amenorrhoea. Clin Endocrinol (Oxf) 1986; 24 (05) 531-537
  • 26 Fox SR, Hoefer MT, Bartke A, Smith MS. Suppression of pulsatile LH secretion, pituitary GnRH receptor content and pituitary responsiveness to GnRH by hyperprolactinemia in the male rat. Neuroendocrinology 1987; 46 (04) 350-359
  • 27 Park SK, Selmanoff M. Dose-dependent suppression of postcastration luteinizing hormone secretion exerted by exogenous prolactin administration in male rats: a model for studying hyperprolactinemic hypogonadism. Neuroendocrinology 1991; 53 (04) 404-410
  • 28 Park SK, Keenan MW, Selmanoff M. Graded hyperprolactinemia first suppresses LH pulse frequency and then pulse amplitude in castrated male rats. Neuroendocrinology 1993; 58 (04) 448-453
  • 29 Cohen-Becker IR, Selmanoff M, Wise PM. Hyperprolactinemia alters the frequency and amplitude of pulsatile luteinizing hormone secretion in the ovariectomized rat. Neuroendocrinology 1986; 42 (04) 328-333
  • 30 Weber RF, de Greef WJ, de Koning J, Vreeburg JT. LH-RH and dopamine levels in hypophysial stalk plasma and their relationship to plasma gonadotrophins and prolactin levels in male rats bearing a prolactin- and adrenocorticotrophin-secreting pituitary tumor. Neuroendocrinology 1983; 36 (03) 205-210
  • 31 Koike K, Aono T, Miyake A, Tasaka K, Chatani F, Kurachi K. Effect of pituitary transplants on the LH-RH concentrations in the medial basal hypothalamus and hypophyseal portal blood. Brain Res 1984; 301 (02) 253-258
  • 32 Kokay IC, Petersen SL, Grattan DR. Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility. Endocrinology 2011; 152 (02) 526-535
  • 33 Grattan DR, Jasoni CL, Liu X, Anderson GM, Herbison AE. Prolactin regulation of gonadotropin-releasing hormone neurons to suppress luteinizing hormone secretion in mice. Endocrinology 2007; 148 (09) 4344-4351
  • 34 Furigo IC, Kim KW, Nagaishi VS. , et al. Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin. Brain Res 2014; 1566: 47-59
  • 35 Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (03) 1235-1316
  • 36 Han SK, Gottsch ML, Lee KJ. , et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005; 25 (49) 11349-11356
  • 37 Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 2008; 149 (09) 4605-4614
  • 38 Herbison AE. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Brain Res Rev 2008; 57 (02) 277-287
  • 39 Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005; 146 (09) 3686-3692
  • 40 Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 2006; 26 (25) 6687-6694
  • 41 Clarkson J, d'Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol 2009; 21 (08) 673-682
  • 42 Araujo-Lopes R, Crampton JR, Aquino NS. , et al. Prolactin regulates kisspeptin neurons in the arcuate nucleus to suppress LH secretion in female rats. Endocrinology 2014; 155 (03) 1010-1020
  • 43 Clarkson J, Han SY, Piet R. , et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 2017; 114 (47) E10216-E10223
  • 44 McQuillan HJ, Han SY, Cheong I, Herbison AE. GnRH pulse generator activity across the estrous cycle of female mice. Endocrinology 2019; 160 (06) 1480-1491
  • 45 Clarkson J, Herbison AE. Oestrogen, kisspeptin, GPR54 and the pre-ovulatory luteinising hormone surge. J Neuroendocrinol 2009; 21 (04) 305-311
  • 46 Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev 2009; 30 (06) 713-743
  • 47 Li Q, Rao A, Pereira A, Clarke IJ, Smith JT. Kisspeptin cells in the ovine arcuate nucleus express prolactin receptor but not melatonin receptor. J Neuroendocrinol 2011; 23 (10) 871-882
  • 48 Brown RS, Herbison AE, Grattan DR. Prolactin regulation of kisspeptin neurones in the mouse brain and its role in the lactation-induced suppression of kisspeptin expression. J Neuroendocrinol 2014; 26 (12) 898-908
  • 49 Sonigo C, Bouilly J, Carré N. , et al. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest 2012; 122 (10) 3791-3795
  • 50 Millar RP, Sonigo C, Anderson RA. , et al. Hypothalamic-pituitary-ovarian axis reactivation by kisspeptin-10 in hyperprolactinemic women with chronic amenorrhea. J Endocr Soc 2017; 1 (11) 1362-1371
  • 51 Brown RSE, Khant Aung Z, Phillipps HR. , et al. Acute suppression of LH secretion by prolactin in female mice is mediated by kisspeptin neurons in the arcuate nucleus. Endocrinology 2019; 160 (05) 1323-1332
  • 52 Grattan DR, LeTissier P. Hypothalamic control of prolactin secretion, and the multiple reproductive functions of prolactin. In: Plant TM, Zelesnik AJ. , eds. Knobil and Neill's Physiology of Reproduction. 4th ed. Elsevier; 2015: 469-526
  • 53 Valeggia C, Ellison PT. Interactions between metabolic and reproductive functions in the resumption of postpartum fecundity. Am J Hum Biol 2009; 21 (04) 559-566
  • 54 Short RV. Lactation--the central control of reproduction. Ciba Found Symp 1976; (45) 73-86
  • 55 McNeilly AS. Suckling and the control of gonadotropin secretion. In: Knobil E, Neill JD. , eds. The Physiology of Reproduction. 2nd ed. New York: Raven Press; 1994: 1179-1212
  • 56 McNeilly AS. Neuroendocrine changes and fertility in breast-feeding women. Prog Brain Res 2001; 133: 207-214
  • 57 Tsukamura H, Maeda K. Non-metabolic and metabolic factors causing lactational anestrus: rat models uncovering the neuroendocrine mechanism underlying the suckling-induced changes in the mother. Prog Brain Res 2001; 133: 187-205
  • 58 Fox SR, Smith MS. The suppression of pulsatile luteinizing hormone secretion during lactation in the rat. Endocrinology 1984; 115 (06) 2045-2051
  • 59 Yamada S, Uenoyama Y, Kinoshita M. , et al. Inhibition of metastin (kisspeptin-54)-GPR54 signaling in the arcuate nucleus-median eminence region during lactation in rats. Endocrinology 2007; 148 (05) 2226-2232
  • 60 Smith MS, True C, Grove KL. The neuroendocrine basis of lactation-induced suppression of GnRH: role of kisspeptin and leptin. Brain Res 2010; 1364: 139-152
  • 61 True C, Kirigiti M, Ciofi P, Grove KL, Smith MS. Characterisation of arcuate nucleus kisspeptin/neurokinin B neuronal projections and regulation during lactation in the rat. J Neuroendocrinol 2011; 23 (01) 52-64
  • 62 Yamada S, Uenoyama Y, Deura C. , et al. Oestrogen-dependent suppression of pulsatile luteinising hormone secretion and kiss1 mRNA expression in the arcuate nucleus during late lactation in rats. J Neuroendocrinol 2012; 24 (09) 1234-1242
  • 63 Ladyman SR, Woodside B. Food restriction during lactation suppresses Kiss1 mRNA expression and kisspeptin-stimulated LH release in rats. Reproduction 2014; 147 (05) 743-751
  • 64 Desroziers E, Mikkelsen J, Simonneaux V. , et al. Mapping of kisspeptin fibres in the brain of the pro-oestrous rat. J Neuroendocrinol 2010; 22 (10) 1101-1112
  • 65 Higo S, Aikawa S, Iijima N, Ozawa H. Rapid modulation of hypothalamic Kiss1 levels by the suckling stimulus in the lactating rat. J Endocrinol 2015; 227 (02) 105-115
  • 66 Liu X, Brown RS, Herbison AE, Grattan DR. Lactational anovulation in mice results from a selective loss of kisspeptin input to GnRH neurons. Endocrinology 2014; 155 (01) 193-203
  • 67 Nakane PK. Classifications of anterior pituitary cell types with immunoenzyme histochemistry. J Histochem Cytochem 1970; 18 (01) 9-20
  • 68 Cheung LYM, George AS, McGee SR. , et al. Single-cell RNA sequencing reveals novel markers of male pituitary stem cells and hormone-producing cell types. Endocrinology 2018; 159 (12) 3910-3924
  • 69 Kanematsu S, Sawyer CH. Elevation of plasma prolactin after hypophysial stalk section in the rat. Endocrinology 1973; 93 (01) 238-241
  • 70 Langer G, Ferin M, Sachar EJ. Effect of haloperidol and L-dopa on plasma prolactin in stalk-sectioned and intact monkeys. Endocrinology 1978; 102 (02) 367-370
  • 71 Everett JW. Functional corpora lutea maintained for months by autografts of rat hypophyses. Endocrinology 1956; 58 (06) 786-796
  • 72 Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 2001; 22 (06) 724-763
  • 73 Fuxe K. Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand Suppl 1965; (Suppl. 247) 37 +
  • 74 Gibbs DM, Neill JD. Dopamine levels in hypophysial stalk blood in the rat are sufficient to inhibit prolactin secretion in vivo. Endocrinology 1978; 102 (06) 1895-1900
  • 75 Meador-Woodruff JH, Mansour A, Bunzow JR, Van Tol HH, Watson Jr SJ, Civelli O. Distribution of D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci U S A 1989; 86 (19) 7625-7628
  • 76 Caron MG, Beaulieu M, Raymond V. , et al. Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem 1978; 253 (07) 2244-2253
  • 77 MacLeod RM. Influence of norepinephrine and catecholamine-depleting agents on the synthesis and release of prolactin and growth hormone. Endocrinology 1969; 85 (05) 916-923
  • 78 MacLeod RM, Fontham EH, Lehmeyer JE. Prolactin and growth hormone production as influenced by catecholamines and agents that affect brain catecholamines. Neuroendocrinology 1970; 6 (05) 283-294
  • 79 Iaccarino C, Samad TA, Mathis C, Kercret H, Picetti R, Borrelli E. Control of lactotrop proliferation by dopamine: essential role of signaling through D2 receptors and ERKs. Proc Natl Acad Sci U S A 2002; 99 (22) 14530-14535
  • 80 Kelly MA, Rubinstein M, Asa SL. , et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997; 19 (01) 103-113
  • 81 Saiardi A, Bozzi Y, Baik JH, Borrelli E. Antiproliferative role of dopamine: loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron 1997; 19 (01) 115-126
  • 82 Björklund A, Moore RY, Nobin A, Stenevi U. The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res 1973; 51: 171-191
  • 83 Kawano H, Daikoku S. Functional topography of the rat hypothalamic dopamine neuron systems: retrograde tracing and immunohistochemical study. J Comp Neurol 1987; 265 (02) 242-253
  • 84 Leong DA, Frawley LS, Neill JD. Neuroendocrine control of prolactin secretion. Annu Rev Physiol 1983; 45: 109-127
  • 85 Holzbauer M, Racké K. The dopaminergic innervation of the intermediate lobe and of the neural lobe of the pituitary gland. Med Biol 1985; 63 (03) 97-116
  • 86 Goudreau JL, Falls WM, Lookingland KJ, Moore KE. Periventricular-hypophysial dopaminergic neurons innervate the intermediate but not the neural lobe of the rat pituitary gland. Neuroendocrinology 1995; 62 (02) 147-154
  • 87 Peters LL, Hoefer MT, Ben-Jonathan N. The posterior pituitary: regulation of anterior pituitary prolactin secretion. Science 1981; 213 (4508): 659-661
  • 88 Liu B, Arbogast LA. Phosphorylation state of tyrosine hydroxylase in the stalk-median eminence is decreased by progesterone in cycling female rats. Endocrinology 2008; 149 (04) 1462-1469
  • 89 Lookingland KJ, Jarry HD, Moore KE. The metabolism of dopamine in the median eminence reflects the activity of tuberoinfundibular neurons. Brain Res 1987; 419 (1-2): 303-310
  • 90 Brown RS, Wyatt AK, Herbison RE. , et al. Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J 2016; 30 (02) 1002-1010
  • 91 Demarest KT, Riegle GD, Moore KE. The rapid ‘tonic’ and the delayed ‘induction’ components of the prolactin-induced activation of tuberoinfundibular dopaminergic neurons following the systemic administration of prolactin. Neuroendocrinology 1986; 43 (03) 291-299
  • 92 Selmanoff M. Rapid effects of hyperprolactinemia on basal prolactin secretion and dopamine turnover in the medial and lateral median eminence. Endocrinology 1985; 116 (05) 1943-1952
  • 93 Romanò N, Yip SH, Hodson DJ. , et al. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci 2013; 33 (10) 4424-4433
  • 94 Newey PJ, Gorvin CM, Cleland SJ. , et al. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med 2013; 369 (21) 2012-2020
  • 95 Gala RR. The physiology and mechanisms of the stress-induced changes in prolactin secretion in the rat. Life Sci 1990; 46 (20) 1407-1420
  • 96 Maurer RA, Gorski J. Effects of estradiol-17beta and pimozide on prolactin synthesis in male and female rats. Endocrinology 1977; 101 (01) 76-84
  • 97 Caligaris L, Astrada JJ, Taleisnik S. Oestrogen and progesterone influence on the release of prolactin in ovariectomized rats. J Endocrinol 1974; 60 (02) 205-215
  • 98 Smith MS, McLean BK, Neill JD. Prolactin: the initial luteotropic stimulus of pseudopregnancy in the rat. Endocrinology 1976; 98 (06) 1370-1377
  • 99 Terkel J, Blake CA, Sawyer CH. Serum prolactin levels in lactating rats after suckling or exposure to ether. Endocrinology 1972; 91 (01) 49-53
  • 100 Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80 (04) 1523-1631
  • 101 Grosvenor CE, Mena F. Evidence that thyrotropin-releasing hormone and a hypothalamic prolactin-releasing factor may function in the release of prolactin in the lactating rat. Endocrinology 1980; 107 (04) 863-868
  • 102 Plotsky PM, Neill JD. Interactions of dopamine and thyrotropin-releasing hormone in the regulation of prolactin release in lactating rats. Endocrinology 1982; 111 (01) 168-173
  • 103 Goodman RL, Lehman MN, Smith JT. , et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 2007; 148 (12) 5752-5760
  • 104 Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 2010; 151 (08) 3479-3489
  • 105 Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 2009; 29 (38) 11859-11866
  • 106 Overgaard A, Ruiz-Pino F, Castellano JM, Tena-Sempere M, Mikkelsen JD. Disparate changes in kisspeptin and neurokinin B expression in the arcuate nucleus after sex steroid manipulation reveal differential regulation of the two KNDy peptides in rats. Endocrinology 2014; 155 (10) 3945-3955
  • 107 Skrapits K, Borsay BA, Herczeg L, Ciofi P, Liposits Z, Hrabovszky E. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human. Front Neurosci 2015; 9: 29
  • 108 Fitzsimmons MD, Olschowka JA, Wiegand SJ, Hoffman GE. Interaction of opioid peptide-containing terminals with dopaminergic perikarya in the rat hypothalamus. Brain Res 1992; 581 (01) 10-18
  • 109 Andrews ZB, Grattan DR. Opioid receptor subtypes involved in the regulation of prolactin secretion during pregnancy and lactation. J Neuroendocrinol 2003; 15 (03) 227-236
  • 110 Callahan P, Klosterman S, Prunty D, Tompkins J, Janik J. Immunoneutralization of endogenous opioid peptides prevents the suckling-induced prolactin increase and the inhibition of tuberoinfundibular dopaminergic neurons. Neuroendocrinology 2000; 71 (04) 268-276
  • 111 Durham RA, Johnson JD, Moore KE, Lookingland KJ. Evidence that D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic neurons in the male rat occurs via inhibition of tonically active afferent dynorphinergic neurons. Brain Res 1996; 732 (1-2): 113-120
  • 112 Lin JY, Pan JT. Effects of endogenous opioid peptides and their analogs on the activities of hypothalamic arcuate neurons in brain slices from diestrous and ovariectomized rats. Brain Res Bull 1995; 36 (03) 225-233
  • 113 Szawka RE, Ribeiro AB, Leite CM. , et al. Kisspeptin regulates prolactin release through hypothalamic dopaminergic neurons. Endocrinology 2010; 151 (07) 3247-3257
  • 114 Sawai N, Iijima N, Takumi K, Matsumoto K, Ozawa H. Immunofluorescent histochemical and ultrastructural studies on the innervation of kisspeptin/neurokinin B neurons to tuberoinfundibular dopaminergic neurons in the arcuate nucleus of rats. Neurosci Res 2012; 74 (01) 10-16
  • 115 Sawai N, Iijima N, Ozawa H, Matsuzaki T. Neurokinin B- and kisspeptin-positive fibers as well as tuberoinfundibular dopaminergic neurons directly innervate periventricular hypophyseal dopaminergic neurons in rats and mice. Neurosci Res 2014; 84: 10-18
  • 116 Ribeiro AB, Leite CM, Kalil B, Franci CR, Anselmo-Franci JA, Szawka RE. Kisspeptin regulates tuberoinfundibular dopaminergic neurones and prolactin secretion in an oestradiol-dependent manner in male and female rats. J Neuroendocrinol 2015; 27 (02) 88-99
  • 117 Aquino NSS, Araujo-Lopes R, Henriques PC. , et al. α-Estrogen and progesterone receptors modulate kisspeptin effects on prolactin: role in estradiol-induced prolactin surge in female rats. Endocrinology 2017; 158 (06) 1812-1826
  • 118 Orlando G, Leone S, Ferrante C. , et al. Effects of kisspeptin-10 on hypothalamic neuropeptides and neurotransmitters involved in appetite control. Molecules 2018; 23 (12) 23
  • 119 Navarro VM, Castellano JM, Fernández-Fernández R. , et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 2004; 145 (10) 4565-4574
  • 120 Gianetti E, Seminara S. Kisspeptin and KISS1R: a critical pathway in the reproductive system. Reproduction 2008; 136 (03) 295-301
  • 121 Kirilov M, Clarkson J, Liu X. , et al. Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. Nat Commun 2013; 4: 2492
  • 122 Aquino NSS, Kokay IC, Perez CT. , et al. Kisspeptin stimulation of prolactin secretion requires Kiss1 receptor but not in tuberoinfundibular dopaminergic neurons. Endocrinology 2019; 160 (03) 522-533
  • 123 Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Adv Exp Med Biol 2013; 784: 27-62
  • 124 Fu LY, van den Pol AN. Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J Neurosci 2010; 30 (30) 10205-10219
  • 125 Herbison AE, de Tassigny Xd, Doran J, Colledge WH. Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 2010; 151 (01) 312-321
  • 126 Higo S, Iijima N, Ozawa H. Characterisation of Kiss1r (Gpr54)-expressing neurones in the arcuate nucleus of the female rat hypothalamus. J Neuroendocrinol 2017; 29 (02) 29
  • 127 Liu X, Herbison A. Kisspeptin regulation of arcuate neuron excitability in kisspeptin receptor knockout mice. Endocrinology 2015; 156 (05) 1815-1827
  • 128 Elhabazi K, Humbert JP, Bertin I. , et al. Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology 2013; 75: 164-171
  • 129 Araujo-Lopes R, Yip SH, Silva JF. , et al. Estradiol induces a functional switch in arcuate KNDy neurons from kisspeptin to dynorphin to facilitate prolactin secretion. Neuroendocrine control of reproduction (OR23). Proceedings of the Endocrine Society's 99th Annual Meeting and Expo, 2017; Orlando, FL; Abstract OR23–2
  • 130 Cetel NS, Yen SS. Concomitant pulsatile release of prolactin and luteinizing hormone in hypogonadal women. J Clin Endocrinol Metab 1983; 56 (06) 1313-1315
  • 131 Veldhuis JD, Johnson ML. Operating characteristics of the hypothalamo-pituitary-gonadal axis in men: circadian, ultradian, and pulsatile release of prolactin and its temporal coupling with luteinizing hormone. J Clin Endocrinol Metab 1988; 67 (01) 116-123
  • 132 Masaoka K, Kitazawa M, Kumasaka T. Pulsatile secretion of prolactin and luteinizing hormone and their synchronous relationship during the human menstrual cycle. Gynecol Endocrinol 1988; 2 (04) 293-303
  • 133 Belchetz P, Dufy B, Knobil E. Identification of inhibitory and stimulatory control of prolactin secretion in the rhesus monkey. Neuroendocrinology 1978; 27 (1-2): 32-38
  • 134 Shin SH, Chi HJ. Unsuppressed prolactin secretion in the male rat is pulsatile. Neuroendocrinology 1979; 28 (02) 73-81
  • 135 Kotani M, Detheux M, Vandenbogaerde A. , et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276 (37) 34631-34636
  • 136 Muir AI, Chamberlain L, Elshourbagy NA. , et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 2001; 276 (31) 28969-28975
  • 137 Smith JT, Rao A, Pereira A, Caraty A, Millar RP, Clarke IJ. Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge: evidence that gonadotropes are not direct targets of kisspeptin in vivo. Endocrinology 2008; 149 (04) 1951-1959
  • 138 Yang B, Jiang Q, Chan T, Ko WK, Wong AO. Goldfish kisspeptin: molecular cloning, tissue distribution of transcript expression, and stimulatory effects on prolactin, growth hormone and luteinizing hormone secretion and gene expression via direct actions at the pituitary level. Gen Comp Endocrinol 2010; 165 (01) 60-71
  • 139 Hara T, Kanasaki H, Tumurbaatar T, Oride A, Okada H, Kyo S. Role of kisspeptin and Kiss1R in the regulation of prolactin gene expression in rat somatolactotroph GH3 cells. Endocrine 2019; 63 (01) 101-111
  • 140 Kadokawa H, Suzuki S, Hashizume T. Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells. Anim Reprod Sci 2008; 105 (3-4): 404-408
  • 141 Ezzat AA, Saito H, Sawada T. , et al. The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells. Anim Reprod Sci 2010; 121 (3-4): 267-272
  • 142 Luque RM, Córdoba-Chacón J, Gahete MD. , et al. Kisspeptin regulates gonadotroph and somatotroph function in nonhuman primate pituitary via common and distinct signaling mechanisms. Endocrinology 2011; 152 (03) 957-966
  • 143 Smith JT, Saleh SN, Clarke IJ. Seasonal and cyclical change in the luteinizing hormone response to kisspeptin in the ewe. Neuroendocrinology 2009; 90 (03) 283-291
  • 144 Hashizume T, Saito H, Sawada T. , et al. Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Anim Reprod Sci 2010; 118 (01) 37-41
  • 145 Ramaswamy S, Gibbs RB, Plant TM. Studies of the localisation of kisspeptin within the pituitary of the rhesus monkey (Macaca mulatta) and the effect of kisspeptin on the release of non-gonadotropic pituitary hormones. J Neuroendocrinol 2009; 21 (10) 795-804
  • 146 Jayasena CN, Comninos AN, Narayanaswamy S. , et al. Acute and chronic effects of kisspeptin-54 administration on GH, prolactin and TSH secretion in healthy women. Clin Endocrinol (Oxf) 2014; 81 (06) 891-898
  • 147 Hu KL, Zhao H, Yu Y, Li R. Kisspeptin as a potential biomarker throughout pregnancy. Eur J Obstet Gynecol Reprod Biol 2019; 240: 261-266
  • 148 Herbison AE. The gonadotropin-releasing hormone pulse generator. Endocrinology 2018; 159 (11) 3723-3736