Semin Reprod Med 2019; 37(04): 155-165
DOI: 10.1055/s-0039-3400967
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Neuropeptide Control of Puberty: Beyond Kisspeptins

Alexia Barroso
1   Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
2   Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
,
Juan Roa
1   Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
2   Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
3   Hospital Universitario Reina Sofia, Cordoba, Spain
4   CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
,
Manuel Tena-Sempere
1   Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
2   Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
3   Hospital Universitario Reina Sofia, Cordoba, Spain
4   CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
5   FiDiPro Program, Institute of Biomedicine, University of Turku, Turku, Finland
› Author Affiliations
Further Information

Publication History

Publication Date:
23 January 2020 (online)

Abstract

Puberty is a fundamental developmental event in the lifespan of any individual, when sexual and somatic maturation is completed, and reproductive capacity is achieved. While the tempo of puberty is under strong genetic determination, it is also modulated by a wide array of internal and environmental cues, including, prominently, nutritional and metabolic signals. In the last decade, our understanding of the neurohormonal basis of normal puberty and its perturbations has enlarged considerably. This is illustrated by the elucidation of the essential roles of kisspeptins, encoded by the Kiss1 gene, in the hypothalamic circuits controlling puberty. Moreover, other neuropeptide pathways, convergent with kisspeptin signaling, have been pointed out as important coregulators of pubertal timing. These include the cotransmitters of Kiss1 neurons in the arcuate nucleus (ARC), neurokinin B, and dynorphin, as well as melanocortins, produced by ARC neurons expressing proopiomelanocortin, which are endowed with key roles also in the control of metabolic homeostasis. This neuropeptide setup seemingly participates, in a coordinated manner, in transmitting the regulatory actions of metabolic cues on pubertal maturation. In this function, cellular metabolic sensors, such as the AMP-activated protein kinase, and the fuel-sensing deacetylase, SIRT1, have also been shown recently to contribute to the metabolic regulation of puberty. Altogether, elucidation of the physiological roles of these signals and regulatory circuits will help uncover the intimacies of the brain control of puberty, and its alterations in conditions of metabolic stress, ranging from subnutrition to obesity.

Disclosure Statement

The authors have nothing to disclose in relation to the contents of this work.


 
  • References

  • 1 Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 2003; 24 (05) 668-693
  • 2 Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2017; 23 (06) 737-763
  • 3 Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol 2015; 36: 90-107
  • 4 Tena-Sempere M, Huhtaniemi I. Gonadotropins and gonadotropin receptors. In: Fauser BCJM. , ed. Reproductive Medicine - Molecular, Cellular and Genetic Fundamentals. New York: Parthenon Publishing; 2003: 225-244
  • 5 Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 2016; 12 (08) 452-466
  • 6 Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (03) 1235-1316
  • 7 Maeda K, Ohkura S, Uenoyama Y. , et al. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res 2010; 1364: 103-115
  • 8 Ojeda SR, Lomniczi A, Sandau U. Contribution of glial-neuronal interactions to the neuroendocrine control of female puberty. Eur J Neurosci 2010; 32 (12) 2003-2010
  • 9 Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr Rev 2018; 39 (03) 333-368
  • 10 Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res 1980; 36: 53-88
  • 11 Clarkson J, Han SY, Piet R. , et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 2017; 114 (47) E10216-E10223
  • 12 Kotani M, Detheux M, Vandenbogaerde A. , et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276 (37) 34631-34636
  • 13 Ohtaki T, Shintani Y, Honda S. , et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001; 411 (6837): 613-617
  • 14 Seminara SB, Messager S, Chatzidaki EE. , et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349 (17) 1614-1627
  • 15 de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003; 100 (19) 10972-10976
  • 16 Navarro VM, Castellano JM, Fernández-Fernández R. , et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 2004; 145 (10) 4565-4574
  • 17 Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 2005; 102 (06) 2129-2134
  • 18 Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 2006; 147 (12) 5817-5825
  • 19 Bentsen AH, Ansel L, Simonneaux V, Tena-Sempere M, Juul A, Mikkelsen JD. Maturation of kisspeptinergic neurons coincides with puberty onset in male rats. Peptides 2010; 31 (02) 275-283
  • 20 Han SK, Gottsch ML, Lee KJ. , et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005; 25 (49) 11349-11356
  • 21 Castellano JM, Navarro VM, Fernández-Fernández R. , et al. Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Mol Cell Endocrinol 2006; 257-258: 75-83
  • 22 Roa J, Vigo E, García-Galiano D. , et al. Desensitization of gonadotropin responses to kisspeptin in the female rat: analyses of LH and FSH secretion at different developmental and metabolic states. Am J Physiol Endocrinol Metab 2008; 294 (06) E1088-E1096
  • 23 Clarkson J, Boon WC, Simpson ER, Herbison AE. Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 2009; 150 (07) 3214-3220
  • 24 Navarro VM, Fernández-Fernández R, Castellano JM. , et al. Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol 2004; 561 (Pt 2): 379-386
  • 25 Pineda R, Garcia-Galiano D, Roseweir A. , et al. Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist. Endocrinology 2010; 151 (02) 722-730
  • 26 Mayer C, Boehm U. Female reproductive maturation in the absence of kisspeptin/GPR54 signaling. Nat Neurosci 2011; 14 (06) 704-710
  • 27 Guerriero KA, Keen KL, Millar RP, Terasawa E. Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology 2012; 153 (02) 825-836
  • 28 Topaloglu AK, Tello JA, Kotan LD. , et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 2012; 366 (07) 629-635
  • 29 d'Anglemont de Tassigny X, Fagg LA, Dixon JP. , et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A 2007; 104 (25) 10714-10719
  • 30 Garcia-Galiano D, Pinilla L, Tena-Sempere M. Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol 2012; 24 (01) 22-33
  • 31 Okamura H, Tsukamura H, Ohkura S, Uenoyama Y, Wakabayashi Y, Maeda K. Kisspeptin and GnRH pulse generation. Adv Exp Med Biol 2013; 784: 297-323
  • 32 Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 2010; 151 (08) 3479-3489
  • 33 Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Central mechanism controlling pubertal onset in mammals: a triggering role of kisspeptin. Front Endocrinol (Lausanne) 2019; 10: 312
  • 34 Ikegami K, Minabe S, Ieda N. , et al. Evidence of involvement of neurone-glia/neurone-neurone communications via gap junctions in synchronized activity of KNDy neurones. J Neuroendocrinol 2017; 29 (06) 29
  • 35 Adekunbi DA, Li XF, Li S. , et al. Role of amygdala kisspeptin in pubertal timing in female rats. PLoS One 2017; 12 (08) e0183596
  • 36 Pineda R, Plaisier F, Millar RP, Ludwig M. Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology 2017; 104 (03) 223-238
  • 37 Stephens SB, Chahal N, Munaganuru N, Parra RA, Kauffman AS. Estrogen stimulation of Kiss1 expression in the medial amygdala involves estrogen receptor-α but not estrogen receptor-β. Endocrinology 2016; 157 (10) 4021-4031
  • 38 Fergani C, Leon S, Padilla SL, Verstegen AM, Palmiter RD, Navarro VM. NKB signaling in the posterodorsal medial amygdala stimulates gonadotropin release in a kisspeptin-independent manner in female mice. eLife 2018; 7: 7
  • 39 Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 2009; 29 (38) 11859-11866
  • 40 Navarro VM, Tena-Sempere M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 2011; 8 (01) 40-53
  • 41 Sandoval-Guzmán T, Rance NE. Central injection of senktide, an NK3 receptor agonist, or neuropeptide Y inhibits LH secretion and induces different patterns of Fos expression in the rat hypothalamus. Brain Res 2004; 1026 (02) 307-312
  • 42 Topaloglu AK, Reimann F, Guclu M. , et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 2009; 41 (03) 354-358
  • 43 Navarro VM, Ruiz-Pino F, Sánchez-Garrido MA. , et al. Role of neurokinin B in the control of female puberty and its modulation by metabolic status. J Neurosci 2012; 32 (07) 2388-2397
  • 44 Gill JC, Navarro VM, Kwong C. , et al. Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid-negative feedback than Kiss1. Endocrinology 2012; 153 (10) 4883-4893
  • 45 Nakahara T, Uenoyama Y, Iwase A. , et al. Chronic peripheral administration of kappa-opioid receptor antagonist advances puberty onset associated with acceleration of pulsatile luteinizing hormone secretion in female rats. J Reprod Dev 2013; 59 (05) 479-484
  • 46 Li SY, Li XF, Hu MH. , et al. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat. J Neuroendocrinol 2014; 26 (08) 521-527
  • 47 True C, Nasrin Alam S, Cox K, Chan YM, Seminara SB. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice. Endocrinology 2015; 156 (04) 1386-1397
  • 48 Greenwald-Yarnell ML, Marsh C, Allison MB. , et al. ERα in Tac2 neurons regulates puberty onset in female mice. Endocrinology 2016; 157 (04) 1555-1565
  • 49 Lopez JA, Bedenbaugh MN, McCosh RB. , et al. Does dynorphin play a role in the onset of puberty in female sheep?. J Neuroendocrinol 2016; 28 (12) 28
  • 50 Simavli S, Thompson IR, Maguire CA. , et al. Substance p regulates puberty onset and fertility in the female mouse. Endocrinology 2015; 156 (06) 2313-2322
  • 51 Maguire CA, Song YB, Wu M. , et al. Tac1 signaling is required for sexual maturation and responsiveness of GnRH neurons to kisspeptin in the male mouse. Endocrinology 2017; 158 (07) 2319-2329
  • 52 León S, Fergani C, Talbi R. , et al. Characterization of the role of NKA in the control of puberty onset and gonadotropin release in the female mouse. Endocrinology 2019; 160 (10) 2453-2463
  • 53 Urbanski HF, Ojeda SR. A role for N-methyl-D-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 1990; 126 (03) 1774-1776
  • 54 Mitsushima D, Hei DL, Terasawa E. gamma-Aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci U S A 1994; 91 (01) 395-399
  • 55 Garfield AS, Lam DD, Marston OJ, Przydzial MJ, Heisler LK. Role of central melanocortin pathways in energy homeostasis. Trends Endocrinol Metab 2009; 20 (05) 203-215
  • 56 Tao YX. Mutations in melanocortin-4 receptor and human obesity. Prog Mol Biol Transl Sci 2009; 88: 173-204
  • 57 Xu Y, Faulkner LD, Hill JW. Cross-talk between metabolism and reproduction: the role of POMC and SF1 neurons. Front Endocrinol (Lausanne) 2012; 2: 98
  • 58 Roa J, Herbison AE. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 2012; 153 (11) 5587-5599
  • 59 Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci 2013; 70 (05) 841-862
  • 60 Backholer K, Smith JT, Rao A. , et al. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 2010; 151 (05) 2233-2243
  • 61 Fu LY, van den Pol AN. Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J Neurosci 2010; 30 (30) 10205-10219
  • 62 Manfredi-Lozano M, Roa J, Ruiz-Pino F. , et al. Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 2016; 5 (10) 844-857
  • 63 True C, Verma S, Grove KL, Smith MS. Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology 2013; 154 (08) 2821-2832
  • 64 Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A 1998; 95 (25) 15043-15048
  • 65 Chronwall BM, DiMaggio DA, Massari VJ, Pickel VM, Ruggiero DA, O'Donohue TL. The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 1985; 15 (04) 1159-1181
  • 66 Turi GF, Liposits Z, Moenter SM, Fekete C, Hrabovszky E. Origin of neuropeptide Y-containing afferents to gonadotropin-releasing hormone neurons in male mice. Endocrinology 2003; 144 (11) 4967-4974
  • 67 Pierroz DD, Catzeflis C, Aebi AC, Rivier JE, Aubert ML. Chronic administration of neuropeptide Y into the lateral ventricle inhibits both the pituitary-testicular axis and growth hormone and insulin-like growth factor I secretion in intact adult male rats. Endocrinology 1996; 137 (01) 3-12
  • 68 Estrada KM, Pompolo S, Morris MJ, Tilbrook AJ, Clarke IJ. Neuropeptide Y (NPY) delays the oestrogen-induced luteinizing hormone (LH) surge in the ovariectomized ewe: further evidence that NPY has a predominant negative effect on LH secretion in the ewe. J Neuroendocrinol 2003; 15 (11) 1011-1020
  • 69 Raposinho PD, Pierroz DD, Broqua P, White RB, Pedrazzini T, Aubert ML. Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism. Mol Cell Endocrinol 2001; 185 (1-2): 195-204
  • 70 Vulliémoz NR, Xiao E, Xia-Zhang L, Wardlaw SL, Ferin M. Central infusion of agouti-related peptide suppresses pulsatile luteinizing hormone release in the ovariectomized rhesus monkey. Endocrinology 2005; 146 (02) 784-789
  • 71 Schioth HB, Kakizaki Y, Kohsaka A, Suda T, Watanobe H. Agouti-related peptide prevents steroid-induced luteinizing hormone and prolactin surges in female rats. Neuroreport 2001; 12 (04) 687-690
  • 72 Jain MR, Pu S, Kalra PS, Kalra SP. Evidence that stimulation of two modalities of pituitary luteinizing hormone release in ovarian steroid-primed ovariectomized rats may involve neuropeptide Y Y1 and Y4 receptors. Endocrinology 1999; 140 (11) 5171-5177
  • 73 Kalra SP, Crowley WR. Neuropeptide Y: a novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. Front Neuroendocrinol 1992; 13 (01) 1-46
  • 74 Padilla SL, Qiu J, Nestor CC. , et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc Natl Acad Sci U S A 2017; 114 (09) 2413-2418
  • 75 El Majdoubi M, Sahu A, Ramaswamy S, Plant TM. Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proc Natl Acad Sci U S A 2000; 97 (11) 6179-6184
  • 76 Pralong FP, Voirol M, Giacomini M, Gaillard RC, Grouzmann E. Acceleration of pubertal development following central blockade of the Y1 subtype of neuropeptide Y receptors. Regul Pept 2000; 95 (1-3): 47-52
  • 77 Sheffer-Babila S, Sun Y, Israel DD, Liu SM, Neal-Perry G, Chua Jr SC. Agouti-related peptide plays a critical role in leptin's effects on female puberty and reproduction. Am J Physiol Endocrinol Metab 2013; 305 (12) E1512-E1520
  • 78 Egan OK, Inglis MA, Anderson GM. Leptin signaling in AgRP neurons modulates puberty onset and adult fertility in mice. J Neurosci 2017; 37 (14) 3875-3886
  • 79 Vazquez MJ, Velasco I, Tena-Sempere M. Novel mechanisms for the metabolic control of puberty: implications for pubertal alterations in early-onset obesity and malnutrition. J Endocrinol 2019; JOE-19-0223.R1
  • 80 Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol 2018; 48: 37-49
  • 81 Hill JW, Elias CF. Neuroanatomical framework of the metabolic control of reproduction. Physiol Rev 2018; 98 (04) 2349-2380
  • 82 Frisch RE, Revelle R. Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 1970; 169 (3943): 397-399
  • 83 Aksglaede L, Juul A, Olsen LW, Sørensen TI. Age at puberty and the emerging obesity epidemic. PLoS One 2009; 4 (12) e8450
  • 84 De Leonibus C, Marcovecchio ML, Chiavaroli V, de Giorgis T, Chiarelli F, Mohn A. Timing of puberty and physical growth in obese children: a longitudinal study in boys and girls. Pediatr Obes 2014; 9 (04) 292-299
  • 85 Pralong FP. Insulin and NPY pathways and the control of GnRH function and puberty onset. Mol Cell Endocrinol 2010; 324 (1-2): 82-86
  • 86 Castellano JM, Tena-Sempere M. Metabolic control of female puberty: potential therapeutic targets. Expert Opin Ther Targets 2016; 20 (10) 1181-1193
  • 87 Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M. Kisspeptins: bridging energy homeostasis and reproduction. Brain Res 2010; 1364: 129-138
  • 88 Castellano JM, Navarro VM, Fernández-Fernández R. , et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 2005; 146 (09) 3917-3925
  • 89 Castellano JM, Bentsen AH, Sánchez-Garrido MA. , et al. Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology 2011; 152 (09) 3396-3408
  • 90 Li XF, Lin YS, Kinsey-Jones JS, O'Byrne KT. High-fat diet increases LH pulse frequency and kisspeptin-neurokinin B expression in puberty-advanced female rats. Endocrinology 2012; 153 (09) 4422-4431
  • 91 Quennell JH, Howell CS, Roa J, Augustine RA, Grattan DR, Anderson GM. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology 2011; 152 (04) 1541-1550
  • 92 Sánchez-Garrido MA, Ruiz-Pino F, Manfredi-Lozano M. , et al. Obesity-induced hypogonadism in the male: premature reproductive neuroendocrine senescence and contribution of Kiss1-mediated mechanisms. Endocrinology 2014; 155 (03) 1067-1079
  • 93 Finn PD, Cunningham MJ, Pau KY, Spies HG, Clifton DK, Steiner RA. The stimulatory effect of leptin on the neuroendocrine reproductive axis of the monkey. Endocrinology 1998; 139 (11) 4652-4662
  • 94 Quennell JH, Mulligan AC, Tups A. , et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 2009; 150 (06) 2805-2812
  • 95 Elias CF. Leptin action in pubertal development: recent advances and unanswered questions. Trends Endocrinol Metab 2012; 23 (01) 9-15
  • 96 Pralong FP, Gonzales C, Voirol MJ. , et al. The neuropeptide Y Y1 receptor regulates leptin-mediated control of energy homeostasis and reproductive functions. FASEB J 2002; 16 (07) 712-714
  • 97 Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006; 18 (04) 298-303
  • 98 Qiu J, Fang Y, Bosch MA, Rønnekleiv OK, Kelly MJ. Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 2011; 152 (04) 1503-1514
  • 99 Luque RM, Kineman RD, Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology 2007; 148 (10) 4601-4611
  • 100 Donato Jr J, Cravo RM, Frazão R. , et al. Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 2011; 121 (01) 355-368
  • 101 Cravo RM, Margatho LO, Osborne-Lawrence S. , et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2011; 173: 37-56
  • 102 Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers Jr MG. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 2011; 152 (06) 2302-2310
  • 103 Cravo RM, Frazao R, Perello M. , et al. Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS One 2013; 8 (03) e58698
  • 104 Roa J, Garcia-Galiano D, Varela L. , et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 2009; 150 (11) 5016-5026
  • 105 Roa J, Barroso A, Ruiz-Pino F. , et al. Metabolic regulation of female puberty via hypothalamic AMPK-kisspeptin signaling. Proc Natl Acad Sci U S A 2018; 115 (45) E10758-E10767
  • 106 Vazquez MJ, Toro CA, Castellano JM. , et al. SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression. Nat Commun 2018; 9 (01) 4194