CC BY-NC-ND 4.0 · Int Arch Otorhinolaryngol 2020; 24(04): e462-e471
DOI: 10.1055/s-0039-3402441
Original Research

Effect of Quiet and Noise on P300 Response in Individuals with Auditory Neuropathy Spectrum Disorder

1   Department of Speech and Hearing, JSS Institute of Speech & Hearing, Mysuru, India
,
Ajith U. Kumar
2   Department of Audiology, All India Institute of Speech & Hearing, Mysuru, India
› Author Affiliations

Abstract

Introduction Auditory neuropathy spectrum disorder (ANSD) is a clinical condition in which individuals have normal cochlear responses and abnormal neural responses. There is a lack of evidence in the literature regarding the neural discrimination skill in individuals with ANSD, especially when the signal is presented in the presence of noise.

Objectives The present study was performed with the aim to investigate auditory discrimination skill, in quiet and in the presence of noise, in individuals with ANSD and to compare the findings with normal-hearing individuals.

Methods A total of 30 individuals with normal hearing sensitivity and 30 individuals with ANSD in the age range of 15 to 55 years old, with the mean age of 27.86 years old, were the participants. P300 response was recorded from both groups using syllable pairs /ba/-/da/ in oddball paradigm and the syllable /da/ in repetitive paradigm in quiet and at +10 dB signal-to-noise ratio (SNR).

Results There was significant prolongation in latency and reaction time, and reduction in amplitude of P300 response and sensitivity in both groups with the addition of noise. The topographic pattern analysis showed activation of the central-parietal-occipital region of the brain in individuals with ANSD, whereas activation of the central-parietal region was observed in individuals with normal hearing. The activation was more diffused in individuals with ANSD compared with that of individuals with normal hearing.

Conclusion The individuals with ANSD showed a significantly more adverse effect of noise on the neural discrimination skill than the normal counterpart.



Publication History

Received: 12 July 2019

Accepted: 04 November 2019

Article published online:
11 March 2020

© .

Thieme Revinter Publicações Ltda
Rio de Janeiro, Brazil

 
  • References

  • 1 Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015; 138 (Pt 11): 3141-3158 DOI: 10.1093/brain/awv270.
  • 2 Roche JP, Huang BY, Castillo M, Bassim MK, Adunka OF, Buchman CA. Imaging characteristics of children with auditory neuropathy spectrum disorder. Otol Neurotol 2010; 31 (05) 780-788 . Doi: 10.1097/MAO.0b013e3181d8d528
  • 3 Liu C, Bu X, Wu F, Xing G. Unilateral auditory neuropathy caused by cochlear nerve deficiency. Int J Otolaryngol 2012; 2012: 914986 . Doi: 10.1155/2012/914986
  • 4 Buchman CA, Roush PA, Teagle HFB, Brown CJ, Zdanski CJ, Grose JH. Auditory neuropathy characteristics in children with cochlear nerve deficiency. Ear Hear 2006; 27 (04) 399-408 . Doi: 10.1097/01.aud.0000224100.30525.ab
  • 5 Sininger YS. Identification of auditory neuropathy in infants and children. Semin Hear 2002; 23: 193-200 . Doi: 10.1055/s-2002-34456
  • 6 Teagle HF, Roush PA, Woodard JS. et al. Cochlear implantation in children with auditory neuropathy spectrum disorder. Ear Hear 2010; 31 (03) 325-335 . Doi: 10.1097/AUD.0b013e3181ce693b
  • 7 Hood LJ. Auditory neuropathy/dyssynchrony disorder Diagnosis and Management. Otolaryngol Clin North Am 2015; 48 (06) 1027-1040 . Doi: 10.1016/j.otc.2015.06.006
  • 8 Starr A, Sininger YS, Pratt H. The varieties of auditory neuropathy. J Basic Clin Physiol Pharmacol 2000; 11 (03) 215-230 . Doi: 10.1515/jbcpp.2000.11.3.215
  • 9 Berlin CI, Hood LJ, Morlet T. et al. Absent or elevated middle ear muscle reflexes in the presence of normal otoacoustic emissions: a universal finding in 136 cases of auditory neuropathy/dys-synchrony. J Am Acad Audiol 2005; 16 (08) 546-553 . Doi: 10.3766/jaaa.16.8.3
  • 10 Berlin CI, Hood LJ, Morlet T. et al. Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol 2010; 49 (01) 30-43 . Doi: 10.3109/14992020903160892
  • 11 Picton T. Hearing in time: evoked potential studies of temporal processing. Ear Hear 2013; 34 (04) 385-401 . Doi: 10.1097/AUD.0b013e31827ada02
  • 12 Starr A, Picton TW, Kim R. Pathophysiology of Auditory Neuropathy. In: Sininger Y, Starr A. , eds. Auditory Neuropathy:a new perspective on hearing disorders. Singular, San Diego; 2001: 67-82
  • 13 Moser T, Starr A. Auditory neuropathy--neural and synaptic mechanisms. Nat Rev Neurol 2016; 12 (03) 135-149 . Doi: 10.1038/nrneurol.2016.10
  • 14 Narne VK, Vanaja C. Speech identification and cortical potentials in individuals with auditory neuropathy. Behav Brain Funct 2008; 4: 15 . Doi: 10.1186/1744-9081-4-15
  • 15 Narne VK, Prabhu P, Chandan H, Deepthi M. Audiological profiling of 198 individuals with auditory neuropathy spectrum disorder. Hear Balance Commun 2014; 12: 112-120 . Doi: 10.3109/21695717.2014.938481
  • 16 Kumar AU, Jayaram M. Auditory processing in individuals with auditory neuropathy. Behav Brain Funct 2005; 1: 21 . Doi: 10.1186/1744-9081-1-21
  • 17 Kraus N, Bradlow AR, Cheatham MA. et al. Consequences of neural asynchrony: a case of auditory neuropathy. J Assoc Res Otolaryngol 2000; 1 (01) 33-45 . Doi: 10.1007/s101620010004
  • 18 Narne VK, Chatni S, Kalaiah M. et al. Temporal processing and speech perception in quiet and noise across different degrees of ANSD. Hear Balance Commun 2015; 13: 100-110 . Doi: 10.3109/21695717.2015.1021565
  • 19 Apeksha K, Kumar AU. Speech perception in quiet and in noise condition in individuals with auditory neuropathy spectrum disorder. J Int Adv Otol 2017; 13 (01) 83-87 . Doi: 10.5152/iao.2017.3172
  • 20 Akeroyd MA. Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults. Int J Audiol 2008; 47 (Suppl. 02) S53-S71 . Doi: 10.1080/14992020802301142
  • 21 Wingfield A, Tun PA. Cognitive supports and cognitive constraints on comprehension of spoken language. J Am Acad Audiol 2007; 18 (07) 548-558
  • 22 Wingfield A, Tun PA. Spoken Language Comprehension in Older Adults: Interactions between Sensory and Cognitive Changes in Normal Aging. Semin Hear 2001; 22: 287-302
  • 23 Rönnberg J, Lunner T, Zekveld A. et al. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances. Front Syst Neurosci 2013; 7: 31 . Doi: 10.3389/fnsys.2013.00031
  • 24 McCoy SL, Tun PA, Cox LC, Colangelo M, Stewart RA, Wingfield A. Hearing loss and perceptual effort: downstream effects on older adults' memory for speech. Q J Exp Psychol A 2005; 58 (01) 22-33 . Doi: 10.1080/02724980443000151
  • 25 Donchin E, Coles M. Is the P300 component a manifestation of context updating?. Behav Brain Sci 1988; 11: 355-425 . Doi: 10.1017/S0140525 × 00058027
  • 26 Gonsalvez CL, Polich J. P300 amplitude is determined by target-to-target interval. Psychophysiology 2002; 39 (03) 388-396 . Doi: 10.1017/S0048577201393137
  • 27 Key A, Dove G, Maguire M. Linking Brainwaves to the Brain: An ERP Primer. J Chem Inf Model 2013; 53: 1689-1699 . Doi: 10.1017/CBO9781107415324.004
  • 28 Rossini PM, Rossi S, Babiloni C, Polich J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol 2007; 83 (06) 375-400 . Doi: 10.1016/j.pneurobio.2007.07.010
  • 29 Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 1977; 197 (4305): 792-795 DOI: 10.1126/science.887923.
  • 30 Magliero A, Bashore TR, Coles MGH, Donchin E. On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology 1984; 21 (02) 171-186 . Doi: 10.1111/j.1469-8986.1984.tb00201.x
  • 31 Tsolaki A, Kosmidou V, Hadjileontiadis L, Kompatsiaris IY, Tsolaki M. Brain source localization of MMN, P300 and N400: aging and gender differences. Brain Res 2015; 1603: 32-49 . Doi: 10.1016/j.brainres.2014.10.004
  • 32 Cóser MJS, Cóser PL, Pedroso FS, Rigon R, Cioqueta E. P300 auditory evoked potential latency in elderly. Rev Bras Otorrinolaringol (Engl Ed) 2010; 76 (03) 287-293 . Doi: 10.1590/S1808-86942010000300003
  • 33 Halgren E, Marinkovic K, Chauvel P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 1998; 106 (02) 156-164
  • 34 Apeksha K, Kumar AU. P300 in individuals with auditory neuropathy spectrum disorder. J Indian Speech Lang Hear Assoc 2017; 31: 23-28 . Doi: 10.4103/jisha.JISHA
  • 35 Gabr TA. Mismatch negativity in auditory neuropathy/auditory dys-synchrony. Audiol Med 2011; 9: 91-97 . Doi: 10.3109/1651386X.2011.605623
  • 36 Michalewski HJ, Starr A, Zeng FG, Dimitrijevic A. N100 cortical potentials accompanying disrupted auditory nerve activity in auditory neuropathy (AN): effects of signal intensity and continuous noise. Clin Neurophysiol 2009; 120 (07) 1352-1363 . Doi: 10.1016/j.clinph.2009.05.013.N100
  • 37 Apeksha K, Kumar UA. Cortical processing of speech in individuals with auditory neuropathy spectrum disorder. Eur Arch Otorhinolaryngol 2018; 275 (06) 1409-1418 . Doi: 10.1007/s00405-018-4966-8
  • 38 Apeksha K, Kumar UA. Effect of acoustic features on discrimination ability in individuals with auditory neuropathy spectrum disorder: an electrophysiological and behavioral study. Eur Arch Otorhinolaryngol 2019; 276 (06) 1633-1641 . Doi: 10.1007/s00405-019-05405-9
  • 39 Venkatesan S. Ethical Guidelines for Bio-behavioral Research Involving Human Subjects. All India Institute of Speech and Hearing, Mysore 2009
  • 40 Miller G, Nicely P. An analysis of perceptual confusions among some English consonants. J Acoust Soc Am 1955; 27: 338-352 . Doi: 10.1121/1.1907526
  • 41 Boothroyd A. Auditory perception of speech contrasts by subjects with sensorineural hearing loss. J Speech Hear Res 1984; 27 (01) 134-144 . Doi: 10.1044/jshr.2701.134
  • 42 Hornsby BWY, Trine TD, Ohde RN. The effects of high presentation levels on consonant feature transmission. J Acoust Soc Am 2005; 118 (3 Pt 1): 1719-1729 DOI: 10.1121/1.1993128.
  • 43 Sawusch JR, Pisoni DB. On the identification of place and voicing features in synthetic stop consonants. J Phonetics 1974; 2 (03) 181-194
  • 44 Kwon BJ. AUX: a scripting language for auditory signal processing and software packages for psychoacoustic experiments and education. Behav Res Methods 2012; 44 (02) 361-373 . Doi: 10.3758/s13428-011-0161-1
  • 45 Kaplan-Neeman R, Kishon-Rabin L, Henkin Y, Muchnik C. Identification of syllables in noise: electrophysiological and behavioral correlates. J Acoust Soc Am 2006; 120 (02) 926-933 . Doi: 10.1121/1.2217567
  • 46 Wynne DP, Zeng FG, Bhatt S, Michalewski HJ, Dimitrijevic A, Starr A. Loudness adaptation accompanying ribbon synapse and auditory nerve disorders. Brain 2013; 136 (Pt 5): 1626-1638 DOI: 10.1093/brain/awt056.
  • 47 Lehmann D, Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 1980; 48 (06) 609-621 . Doi: 10.1016/0013-4694(80)90419-8
  • 48 Murray MM, Brunet D, Michel CM. Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 2008; 20 (04) 249-264 . Doi: 10.1007/s10548-008-0054-5
  • 49 Abdeltawwab M. Auditory N1–P2 cortical event related potentials in auditory neuropathy spectrum disorder patients. J Int Adv Otol 2014; 10: 270-274 . Doi: 10.5152/iao.2014.104
  • 50 Narne VK, Vanaja CS. Perception of speech with envelope enhancement in individuals with auditory neuropathy and simulated loss of temporal modulation processing. Int J Audiol 2009; 48 (10) 700-707 . Doi: 10.1080/14992020902931574
  • 51 Phillips DP. Neural representation of sound amplitude in the auditory cortex: effects of noise masking. Behav Brain Res 1990; 37 (03) 197-214 . Doi: 10.1016/0166-4328(90)90132-x
  • 52 Song J, Davey C, Poulsen C. et al. EEG source localization: Sensor density and head surface coverage. J Neurosci Methods 2015; 256: 9-21 . Doi: 10.1016/j.jneumeth.2015.08.015