CC BY-NC-ND 4.0 · Yearb Med Inform 2020; 29(01): 226-230
DOI: 10.1055/s-0040-1701989
Section 11: Public Health and Epidemiology Informatics
Georg Thieme Verlag KG Stuttgart

Precision, Equity, and Public Health and Epidemiology Informatics – A Scoping Review

David L. Buckeridge
1   McGill University, Montreal, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
21 August 2020 (online)


Objectives: This scoping review synthesizes the recent literature on precision public health and the influence of predictive models on health equity with the intent to highlight central concepts for each topic and identify research opportunities for the biomedical informatics community.

Methods: Searches were conducted using PubMed for publications between 2017-01-01 and 2019-12-31.

Results: Precision public health is defined as the use of data and evidence to tailor interventions to the characteristics of a single population. It differs from precision medicine in terms of its focus on populations and the limited role of human genomics. High-resolution spatial analysis in a global health context and application of genomics to infectious organisms are areas of progress. Opportunities for informatics research include (i) the development of frameworks for measuring non-clinical concepts, such as social position, (ii) the development of methods for learning from similar populations, and (iii) the evaluation of precision public health implementations. Just as the effects of interventions can differ across populations, predictive models can perform systematically differently across subpopulations due to information bias, sampling bias, random error, and the choice of the output. Algorithm developers, professional societies, and governments can take steps to prevent and mitigate these biases. However, even if the steps to avoid bias are clear in theory, they can be very challenging to accomplish in practice.

Conclusions: Both precision public health and predictive modelling require careful consideration in how subpopulations are defined and access to data on subpopulations can be challenging. While the theory for both topics has advanced considerably, there is much work to be done in understanding how to implement and evaluate these approaches in practice.

  • References

  • 1 Chowkwanyun M, Bayer R, Galea S. “Precision” Public Health - Between Novelty and Hype. N Engl J Med 2018; 379 (15) 1398-400
  • 2 Desmond-Hellmann S. Progress lies in precision. Science 2016; 353 6301 731-1
  • 3 Horton R. Offline: In defence of precision public health. Lancet 2018; 392 10157 1504
  • 4 Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372 (09) 793-5
  • 5 Prosperi M, Min JS, Bian J, Modave F. Big data hurdles in precision medicine and precision public health. BMC Med Inform Decis Mak 2018; 18 (01) 139
  • 6 Khoury MJ, Galea S. Will Precision Medicine Improve Population Health?. JAMA 2016; 316 (13) 1357-8
  • 7 Taylor-Robinson D, Kee F. Precision public health-the Emperor’s new clothes. Int J Epidemiol 2018; 50 (01) 398-6
  • 8 Khoury MJ, Iademarco MF, Riley WT. Precision Public Health for the Era of Precision Medicine. Am J Prev Med 2016; 50 (03) 398-401
  • 9 Nagar SD, Moreno AM, Norris ET, Rishishwar L, Conley AB, O’Neal KL. et al Population Pharmacogenomics for Precision Public Health in Colombia. Front Genet 2019; 10: 241
  • 10 Sivadas A, Scaria V. Population-scale genomics-Enabling precision public health. Adv Genet 2019; 103: 119-61
  • 11 Ollier W, Muir KR, Lophatananon A, Verma A, Yuille M. Risk biomarkers enable precision in public health. Per Med 2018; 15 (04) 329-42
  • 12 Allen CG, Fohner AE, Landry L, Paul J, Smith SG, Turbitt E. et al. Early career investigators and precision public health. Lancet 2019; 394 10196 382-3
  • 13 Kenney M, Mamo L. The imaginary of precision public health. Med Humanit 2019 : medhum–2018–011597
  • 14 Olstad DL, McIntyre L. Reconceptualising precision public health. BMJ Open 2019; 9 (09) e030279
  • 15 Chowkwanyun M, Bayer R, Galea S. Precision public health: pitfalls and promises. Lancet 2019; 393 10183 1801
  • 16 Dwyer-Lindgren L, Cork MA, Sligar A, Steuben KM, Wilson KF, Provost NR. et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature 2019; 570 7760 189-93
  • 17 Bhattacharjee NV, Schaeffer LE, Marczak LB, Ross JM, Swartz SJ, Albright J. et al. Mapping exclusive breastfeeding in Africa between 2000 and 2017. Nat Med 2019; 25 (08) 1205-12
  • 18 Local Burden of Disease Educational Attainment Collaborators. Mapping disparities in education across low- and middle-income countries. Nature 2019; 392: 1217-7
  • 19 Blower S, Okano JT. Precision public health and HIV in Africa. Lancet Infect Dis 2019; 19 (10) 1050-2
  • 20 Seeking precision in public health. Nat Med 2019; 25 (08) 1177-7
  • 21 Flahault A, Geissbuhler A, Guessous I, Guérin P, Bolon I, Salathé M. , et al. Precision global health in the digital age. Swiss Med Wkly 2017; 147 1314 w14423
  • 22 Ladner JT, Grubaugh ND, Pybus OG, Andersen KG. Precision epidemiology for infectious disease control. Nat Med 2019; 25 (02) 206-11
  • 23 Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS. et al. Pathogen Genomics in Public Health. N Engl J Med 2019; 381 (26) 2569-80
  • 24 Leguia M, Vila-Sanjurjo A, Chain PSG, Berry IM, Jarman RG, Pollett S. Precision Medicine and Precision Public Health in the Era of Pathogen Next-Generation Sequencing. J Infect Dis 2019; 278: 274
  • 25 Thain N, Le C, Crossa A, Ahuja SD, Meissner JS, Mathema B. et al. Towards better prediction of Mycobacterium tuberculosis lineages from MIRU-VNTR data. Infect Genet Evol 2019; 72: 59-66
  • 26 Temesgen Z, Cirillo DM, Raviglione MC. Precision medicine and public health interventions: tuberculosis as a model?. Lancet Public Health 2019; 4 (08) e374
  • 27 Haendel MA, Chute CG, Robinson PN. Classification, Ontology, and Precision Medicine. N Engl J Med 2018; 379 (15) 1452-62
  • 28 Salathé M. Digital epidemiology: what is it, and where is it going?. Life Sci Soc Policy 2018 Jan 4;14(1):1.
  • 29 Gombar S, Callahan A, Califf R, Harrington R, Shah NH. It is time to learn from patients like mine. NPJ Digit Med 2019; 2 (01) 16-3
  • 30 Bareinboim E, Pearl J. Causal inference and the data-fusion problem. Proc Natl Acad Sci USA 2016; 113 (27) 7345-52
  • 31 Odone A, Buttigieg S, Ricciardi W, Azzopardi-Muscat N, Staines A. Public health digitalization in Europe. Eur J Public Health 2019 2019; 29 (Supplement_3): 28-35
  • 32 Morton S, Pencheon D, Squires N. Sustainable Development Goals (SDGs), and their implementation: A national global framework for health, development and equity needs a systems approach at every level. Br Med Bull 2017; 124 (01) 81-90
  • 33 Flahault A, Bar-Hen A, Paragios N. Public Health and Epidemiology Informatics. Yearb Med Inform 2016; 25 (01) 240-6
  • 34 Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med 2018; 169 (12) 866-72
  • 35 Lavigne M, Mussa F, Creatore MI, Hoffman SJ, Buckeridge DL. A population health perspective on artificial intelligence. Healthc Manage Forum 2019; 32 (04) 173-7
  • 36 Hamilton M. The sexist algorithm. Behav Sci Law 2019; 37 (02) 145-57
  • 37 Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019; 366 6464 447-53
  • 38 Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA Intern Med 2018; 178 (11) 1544-7
  • 39 Riley P. Three pitfalls to avoid in machine learning. Nature 2019; 572 7767 27-9
  • 40 Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat Med 2019; 25 (09) 1337-40
  • 41 Chien AT, Newhouse JP, Iezzoni LI, Petty CR, Normand SLT, Schuster MA. Socioeconomic Background and Commercial Health Plan Spending. Pediatrics 2017; 140 (05) e20171640
  • 42 Eichstaedt JC, Smith RJ, Merchant RM, Ungar LH, Crutchley P, Preoiuc-Pietro D. et al. Facebook language predicts depression in medical records. Proc Natl Acad Sci USA 2018; 115 (44) 11203-8
  • 43 Perrin E, Anderson M. Share of U.S. adults using social media [Internet]. Pew Research Center; 2019 Apr. Available from:
  • 44 Benjamin R. Assessing risk, automating racism. Science 2019; 366 6464 421-2
  • 45 Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. Practical guidance on artificial intelligence for health-care data. The Lancet Digital Health 2019; 1 (04) e157-9
  • 46 Hernandez SE, Sylling PW, Mor MK, Fine MJ, Nelson KM, Wong ES. et al. Developing an Algorithm for Combining Race and Ethnicity Data Sources in the Veterans Health Administration. Mil Med 2019; 23 (05) 654
  • 47 Goodman SN, Goel S, Cullen MR. Machine Learning, Health Disparities, and Causal Reasoning. Ann Intern Med 2018; 169 (12) 883-4
  • 48 Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in healthcare. NPJ Digit Med 2019; 2 (01) 1-3
  • 49 Kerr A, Wells S, Moffitt A, Lund M, Kreichbaum J, Harwood M. et al. A unified national cardiovascular disease (CVD) risk generator is required to address equity in the management of CVD risk in clinical practice in New Zealand. N Z Med J 2019; 132 1500 89-94
  • 50 Matheny ME, Whicher D, Thadaney Israni S. Artificial Intelligence in Health Care: A Report From the National Academy of Medicine. JAMA 2019
  • 51 Topol E. The Topol review: preparing the healthcare workforce to deliver the digital future [Internet]. 2019 Feb. Available from: