Synlett 2021; 32(18): 1816-1825
DOI: 10.1055/s-0040-1706033
account

Additions to Racemates: A Strategy for Developing Asymmetric Cross-Coupling Reactions

,
Stephen P. Fletcher
F.W.G. is grateful to the National Research Fund, Luxembourg, for an AFR Ph.D. Grant (11588566); the EPSRC Doctoral Training Partnership (DTP) for a studentship (EP/N509711/1); and Vertex Pharmaceuticals for financial support.


Abstract

In this Account, the authors describe their progress in developing catalytic asymmetric C(sp3)–C(sp3) and C(sp3)–C(sp2) cross-coupling reactions. Whereas most catalytic enantioselective transformations rely on prochiral or meso starting materials, strategies that use racemic starting materials are rare. Key features of these reactions are efficient mechanisms for deracemization. Here, the authors present copper-catalyzed alkylation and rhodium-catalyzed Suzuki–Miyaura-type arylation reactions, their underlying mechanisms, and their applications in complex-molecule syntheses.



Publication History

Received: 01 March 2021

Accepted after revision: 21 March 2021

Article published online:
12 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 1b Ritchie TJ, Macdonald SJ. F. Drug Discovery Today 2009; 14: 1011
  • 2 Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
  • 3 Steinreiber J, Faber K, Griengl H. Chem. Eur. J. 2008; 14: 8060
  • 4 Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
  • 5 Bhat V, Welin ER, Guo X, Stoltz BM. Chem. Rev. 2017; 117: 4528
  • 6 Yamaguchi M, Shima T, Yamagishi T, Hida M. Tetrahedron Lett. 1990; 31: 5049
  • 7 Trost BM, Bunt RC. J. Am. Chem. Soc. 1994; 116: 4089
  • 8 Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
  • 9 Trost BM, Thaisrivongs DA. J. Am. Chem. Soc. 2008; 130: 14092
  • 10 Moon PJ, Wei Z, Lundgren RJ. J. Am. Chem. Soc. 2018; 140: 17418
  • 11 Niyomchon S, Audisio D, Luparia M, Maulide N. Org. Lett. 2013; 15: 2318
  • 12 Matsushita H, Negishi E.-i. J. Chem. Soc., Chem. Commun. 1982; 160
  • 13 Norinder J, Bäckvall JE. Chem. Eur. J. 2007; 13: 4094
  • 14 Langlois JB, Alexakis A. Chem. Commun. 2009; 3868
  • 15 Langlois JB, Emery D, Mareda J, Alexakis A. Chem. Sci. 2012; 3: 1062

    • For a review, see:
    • 16a Maksymowicz RM, Bissette AJ, Fletcher SP. Chem. Eur. J. 2015; 21: 5668

    • For reports, see
    • 16b Maksymowicz RM, Roth PM. C, Fletcher SP. Nat. Chem. 2012; 4: 649
    • 16c Sidera M, Roth PM. C, Maksymowicz RM, Fletcher SP. Angew. Chem. Int. Ed. 2013; 52: 7995
    • 16d Roth PM. C, Sidera M, Maksymowicz RM, Fletcher SP. Nat. Protoc. 2014; 9: 104
  • 17 You, H. Non-stabilized nucleophiles in Cu-catalyzed asymmetric synthesis. Doctoral dissertation, University of Oxford, Oxford, UK, 2016.
  • 18 You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
  • 19 Rideau E, You H, Sidera M, Claridge TD. W, Fletcher SP. J. Am. Chem. Soc. 2017; 139: 5614
  • 20 Rideau E, Fletcher SP. Beilstein J. Org. Chem. 2015; 11: 2435
  • 21 Karabiyikoglu S, Brethomé AV, Palacin T, Paton RS, Fletcher SP. Chem. Sci. 2020; 11: 4125
  • 22 Sidera M, Fletcher SP. Chem. Commun. 2015; 51: 5044
  • 23 Goetzke FW, van Dijk L, Fletcher SP. In The Chemistry of Organoboron Compounds . Gandelman M, Marek I. Wiley; Chichester: 2019. DOI: 10.1002/9780470682531.pat0962
  • 24 Suzuki A. Angew. Chem. Int. Ed. 2011; 6722
  • 25 Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Wiley-VCH; Weinheim: 2006
  • 26 Takaya Y, Ogasawara M, Hayashi T, Sakai M, Miyaura N. J. Am. Chem. Soc. 1998; 120: 5579
  • 27 Menard F, Chapman TM, Dockendorff C, Lautens M. Org. Lett. 2006; 8: 4569
  • 28 Sidera M, Fletcher SP. Nat. Chem. 2015; 7: 935
  • 29 van Dijk L, Ardkhean R, Sidera M, Karabiyikoglu S, Sari O, Claridge TD. W, Lloyd-Jones GC, Paton RS, Fletcher SP. Nat. Catal. 2021; DOI: 10.1038/s41929-021-00589-y.
  • 30 Schäfer P, Palacin T, Sidera M, Fletcher SP. Nat. Commun. 2017; 8: 15762
  • 31 Cox PA, Leach AG, Campbell AD, Lloyd-Jones GC. J. Am. Chem. Soc. 2016; 138: 9145
  • 32 Cook XA. F, de Gombert A, McKnight J, Pantaine LR. E, Willis MC. Angew. Chem. Int. Ed. 2020; in press; DOI: 10.1002/anie.202010631.
    • 33a Wallace DJ, Baxter CA, Brands KJ. M, Bremeyer N, Brewer SE, Desmond R, Emerson KM, Foley J, Fernandez P, Hu W, Keen SP, Mullens P, Muzzio D, Sajonz P, Tan L, Wilson RD, Zhou G, Zhou G. Org. Process Res. Dev. 2011; 15: 831
    • 33b Chung CK, Bulger PG, Kosjek B, Belyk KM, Rivera N, Scott ME, Humphrey GR, Limanto J, Bachert DC, Emerson KM. Org. Process Res. Dev. 2014; 18: 215
    • 33c Hughes DL. Org. Process Res. Dev. 2017; 21: 1227
    • 33d Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Helal CJ, O’Donnell CJ. J. Med. Chem. 2019; 62: 7340
  • 34 González J, van Dijk L, Goetzke FW, Fletcher SP. Nat. Protoc. 2019; 14: 2972
  • 35 Goetzke FW, Mortimore M, Fletcher SP. Angew. Chem. Int. Ed. 2019; 58: 12128
    • 36a Matsumura Y, Mori N, Nakano T, Sasakura H, Matsugi T, Hara H, Morizawa Y. Tetrahedron Lett. 2004; 45: 1527
    • 36b Pozarowska D. Clin. Ophthalmol. 2010; 4: 1229
  • 37 Kučera R, Goetzke FW, Fletcher SP. Org. Lett. 2020; 22: 2991