Synlett 2021; 32(09): 940-946
DOI: 10.1055/s-0040-1706748
letter

Chalcogenylation of Naphthalene Derivatives Catalyzed by Iron(III) Chloride and Potassium Iodide

Diego Seckler
a   Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
,
Eduardo Q. da da Luz
a   Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
,
Gabriel L. Silvério
a   Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
,
Gul Badshah
a   Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
,
David B. Lima
a   Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
,
Emerson A. Abreu
a   Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
,
Breidi Albach
b   Health Department, Unicesumar–The University Center of Maringá, Curitiba, PR, 81070-190, Brazil
,
Ronny R. Ribeiro
c   Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
,
a   Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná–UFPR, P. O. Box 19061, Curitiba, PR, 81531-990, Brazil
› Author Affiliations
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, CNPq Process: 400400/2016-2, Fundação Araucária and UFPR.


Abstract

We have developed an efficient chalcogenylation of electron-rich naphthalene derivatives catalyzed by FeCl3 and KI. The methodology provides access to several nonsymmetrical diorganoyl chalcogenides (S, Se) by selective C1 chalcogenylation of 2-naphthols or 2-naphthylamines using simple and cheap catalysts. Several control experiments supported the hypothesis that a redox reaction between Fe(III) and KI produces I2, which catalyzed the chalcogenylation.

Supporting Information



Publication History

Received: 21 December 2020

Accepted after revision: 05 March 2021

Article published online:
01 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Huang J.-Q, Fang X, Tian X, Chen P, Lin J.-L, Guo X.-X, Li J.-X, Fan Z, Song W.-M, Song M, Chen F.-Y, Ahati R, Wang L.-W, Zhao Q, Martin C, Chen X.-Y. Nat. Chem. Biol. 2020; 16: 250
    • 1b Atkinson DJ, Brimble MA. Nat. Prod. Rep. 2015; 32: 811
    • 1c McCulloch MW. B, Barrow RA. Molecules 2005; 10: 1272
    • 1d Bräse S, Encinas A, Keck J, Nising CF. Chem. Rev. 2009; 109: 3903
    • 1e Bringmann G, Günther C, Ochse M, Schupp O, Tasler S. Fortschr. Chem. Org. Naturst. 2001; 82: 249
    • 1f Widhalm J, Rhodes DB. Hortic. Res. 2016; 3: 16046
    • 2a Teng D.-G, Wei X.-Y, Yang Z, Zhu Q.-J, Gao H.-S, Li J.-H, Zong Z.-M. Macromol. Chem. Phys. 2020; 221: 1900302 DOI: 10.1002/macp.201900302.
    • 2b Kalla RM. N, Reddy SS, Kim I. Catal. Lett. 2019; 149: 2696
    • 2c Xu N, Li Y, Wu R, Zhu R, Zhang J, Zakeeruddin SM, Li H, Li Z.-S, Grätzel M, Wang P. Chem. Eur. J. 2019; 25: 945
    • 2d Watson MD, Fechtenkötter A, Müllen K. Chem. Rev. 2001; 101: 1267
    • 2e Guo X, Kim FS, Seger MJ, Jenekhe SA, Watson MD. Chem. Mater. 2012; 24: 1434
    • 2f Yan L, Popescu F, Rao MR, Meng H, Perepichka DF. Adv. Electron. Mater. 2017; 3: 1600556
    • 2g Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Chem. Rev. 2016; 116: 11685
    • 2h Shimizu T, Ding W, Kameta N. Chem. Rev. 2020; 120: 2347
    • 2i Cao D, Liu Z, Verwilst P, Koo S, Jangili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
    • 2j Pron A, Gawrys P, Zagorska M, Djurado D, Demadrille R. Chem. Soc. Rev. 2010; 39: 2577
    • 2k Bhosale SV, Jani CH, Langford SJ. Chem. Soc. Rev. 2008; 37: 331
    • 2l Wu W, Liu Y, Zhu D. Chem. Soc. Rev. 2010; 39: 1489
    • 2m Hamilton GR, Sahoo SK, Kamila S, Singh N, Kaur N, Hyland BW, Callan JF. Chem. Soc. Rev. 2015; 44: 4415
    • 2n Bisoyi HK, Kumar S. Chem. Soc. Rev. 2010; 39: 264
    • 2o Polycyclic Arenes and Heteroarenes: Synthesis Properties, and Applications. Miao Q. Wiley-VCH; Weinheim: 2016: 307
    • 3a Sharma M, Prasher P. RSC Med. Chem. 2020; 11: 184
    • 3b Cui H, Kamal Z, Ai T, Xu Y, More SS, Wilson DJ, Chen L. J. Med. Chem. 2014; 57: 8340
    • 3c Naumiec GR, Jenko KJ, Zoghbi SS, Innis RB, Cai L, Pike VW. J. Med. Chem. 2015; 58: 9722
    • 3d Stockdale TP, Williams CM. Chem. Soc. Rev. 2015; 44: 7737
    • 3e Makar S, Saha T, Singh SK. Eur. J. Med. Chem. 2019; 161: 252
    • 3f Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB. Jr, Stewart L. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 15387
    • 3g Pommier Y. Nat. Rev. Cancer 2006; 6: 789
    • 3h Taylor RD, MacCoss M, Lawson AD. J. Med. Chem. 2014; 57: 5845
    • 3i Taylor RD, MacCoss M, Lawson AD. J. Med. Chem. 2017; 60: 1638
    • 4a Matsuda T, Izutsu T, Hashimoto M. Eur. J. Org. Chem. 2020; 2020: 306
    • 4b Zhou S, Wang J, Wang L, Song C, Chen K, Zhu J. Angew. Chem. 2016; 128: 9530
    • 4c Zhang X, Sarkar S, Larock RC. J. Org. Chem. 2006; 71: 236
    • 4d Kang D, Kim J, Oh S, Lee PH. Org. Lett. 2012; 14: 5636
    • 4e Duan S, Herndon JW. Org. Lett. 2008; 10: 1541
    • 4f Ma H, Hu X.-Q, Luo Y.-C, Xu P.-F. Org. Lett. 2017; 19: 6666
    • 4g Wang Q, Zheng N. ACS Catal. 2017; 7: 4197
    • 4h Chan C.-K, Wang H.-S, Tsai Y.-L, Chang M.-Y. RSC Adv. 2017; 7: 29321
    • 4i Cao X, Cai B.-G, Xu G.-Y, Xuan J. Chem. Asian J. 2018; 13: 3855
    • 4j Shu W.-M, Liu S, He J.-X, Wang S, Wu A.-X. J. Org. Chem. 2018; 83: 9156
    • 4k Sbi S, Mkpenie V, Tanemura K, Rohand T. Synlett 2020; 31: 903
    • 4l Peng S, Sun Z, Zhu H, Chen N, Sun X, Gong X, Wang L. Org. Lett. 2020; 22: 3200
    • 4m Prévost S. ChemPlusChem 2020; 85: 476
    • 5a Parumala SK. R, Peddinti RK. Green Chem. 2015; 17: 4068
    • 5b Wang D, Zhang R, Lin S, Yan Z, Guo S. RSC Adv. 2015; 5: 108030
    • 5c Xiao F, Chen S, Tian J, Huang H, Liu Y, Deng G.-J. Green Chem. 2016; 18: 1538
    • 5d Lin Y.-m, Lu G.-p, Wang G.-x, Yi W.-b. Adv. Synth. Catal. 2016; 358: 4100
    • 5e Xu Z.-b, Lu G.-p, Cai C. Org. Biomol. Chem. 2017; 15: 2804
    • 5f Raghuvanshi DS, Verma N. RSC Adv. 2017; 7: 22860
    • 5g Wang D, Guo S, Zhang R, Lin S, Yan Z. RSC Adv. 2016; 6: 54377
    • 5h Hostier T, Ferey V, Ricci G, Gomez Pardo D, Cossy J. Org. Lett. 2015; 17: 3898
    • 5i Xiao F, Tian J, Xing Q, Huang H, Deng G.-J, Liu Y. ChemistrySelect 2017; 2: 428
    • 5j Saravanan P, Anbarasan P. Org. Lett. 2014; 16: 848
    • 5k Xiao F, Chen S, Li C, Huang H, Deng G.-J. Adv. Synth. Catal. 2016; 358: 3881
    • 5l Gogoi P, Gogoi SR, Kalita M, Barman P. Synlett 2013; 24: 873
    • 5m Maeda Y, Koyabu M, Nishimura T, Uemura S. J. Org. Chem. 2004; 69: 7688
    • 5n Rostami A, Khakyzadeh V, Zolfigol MA, Rostami A. Mol. Catal. 2018; 452: 260
    • 6a Meirinho AG, Pereira VF, Martins GM, Saba S, Rafique J, Braga AL, Mendes SR. Eur. J. Org. Chem. 2019; 2019: 6465
    • 6b Silva LT, Azeredo JB, Saba S, Rafique J, Bortoluzzi AJ, Braga AL. Eur. J. Org. Chem. 2017; 4740
    • 6c Xiong X, Yeung Y.-Y. ACS Catal. 2018; 8: 4033
    • 6d Lima DB, Santos PH. V, Fiori P, Badshah G, Luz EQ, Seckler D, Rampon DS. ChemistrySelect 2019; 4: 13558
    • 6e Ghosh T, Mukherjee N, Ranu BC. ACS Omega 2018; 3: 17540
    • 6f Saba S, Rafique J, Franco MS, Schneider AR, Espíndola L, Silva DO, Braga AL. Org. Biomol. Chem. 2018; 16: 880
    • 7a Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 7b Reich HJ, Hondal RJ. ACS Chem. Biol. 2016; 11: 821
    • 7c Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 7d Chivers T, Laitinen RS. Chem. Soc. Rev. 2015; 44: 1725
    • 7e Lenardão EJ, Santi C, Sancineto L. New Frontiers in Organoselenium Compounds . Springer International; New York: 2018
    • 7f Woollins JD, Laitinen R. Selenium and Tellurium Chemistry: From Small Molecules to Biomolecules and Materials. Springer; Berlin: 2011
    • 7g Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments. Jain VK, Priyadarsini KI. Royal Society of Chemistry; Cambridge:
    • 7h Selvakumar K, Singh HB. Chem. Sci. 2018; 9: 7027
    • 7i Christensen MC, Florea I, Loft H, McIntyre RS. J. Affective Disord. 2020; 263: 258
    • 7j Feng M, Tang B, Liang S, Jiang X. Curr. Top. Med. Chem (Sharjah, United Arab Emirates) 2016; 16: 1200
    • 7k Sanford M, Keating GM. CNS Drugs 2012; 26: 435
    • 7l Sanchez C, Asin KE, Artigas F. Pharmacol. Ther. 2015; 145: 43
    • 7m Engman L, Stern D, Frisell H, Vessman K, Berglund M, Ek B, Andersson C.-M. Bioorg. Med. Chem. 1995; 3: 1255
    • 7n Doering M, Ba LA, Lilienthal N, Nicco C, Scherer C, Abbas M, Zada AA. P, Coriat R, Burkholtz T, Wessjohann L, Diederich M, Batteux F, Herling M, Jacob C. J. Med. Chem. 2010; 53: 6954
    • 7o Pinz M, Reis AS, Duarte V, da Rocha MJ, Goldani BS, Alves D, Savegnago L, Luchese C, Wilhelm EA. Eur. J. Pharmacol. 2016; 780: 112
    • 7p Bernardon J.-M, Diaz P. WO 1999065872, 1999
    • 7q Casaril AM, Ignasiak MT, Chuang CY, Vieira B, Padilha NB, Carroll L, Lenardão EJ, Savegnago S, Davies MJ. Free Radical Biol. Med. 2017; 113: 395
    • 7r Kumar S, Sharma N, Maurya IK, Bhasin AK. K, Wangoo N, Brandão P, Félix V, Bhasin KK, Sharma RK. Eur. J. Med. Chem. 2016; 123: 916
    • 8a Lee SM, Lee HR, Dutta G, Lee J, Oh JH, Yang G. Polym. Chem. 2019; 10: 2854
    • 8b Liu C.-C, Mao S.-W, Kuo M.-Y. J. Phys. Chem. C 2010; 114: 22316
    • 8c Yi Z, Wang S, Liu L. Adv. Mater (Weinheim, Ger.) 2015; 27: 3589
    • 8d Reddy MR, Kim H, Kim C, Seo S. Synth. Met. 2018; 235: 153
    • 8e Klauk H. Chem. Soc. Rev. 2010; 39: 2643
    • 8f Tisovský P, Gáplovský A, Gmucová K, Novota M, Pavúk M, Weis M. Org. Electron. 2019; 68: 121
    • 8g Takimiya K, Kunugi Y, Konda Y, Ebata H, Toyoshima Y, Otsubo T. J. Am. Chem. Soc. 2006; 128: 3044
    • 8h Yamamoto T, Takimiya K. J. Am. Chem. Soc. 2007; 129: 2224
    • 8i Takimiya K, Kunugi Y, Konda Y, Niihara N, Otsubo T. J. Am. Chem. Soc. 2004; 126: 5084
    • 8j Ashraf RS, Meager I, Nikolka M, Kirkus M, Planells M, Schroeder BC, Holliday S, Hurhangee M, Nielsen CB, Sirringhaus H, McCulloch I. J. Am. Chem. Soc. 2015; 137: 1314
    • 8k An Y, Oh J, Chen S, Lee B, Lee SM, Han D, Yang C. Polym. Chem. 2018; 9: 593
    • 8l Chen G, Liu S, Xu J, He R, He Z, Wu H.-B, Yang W, Zhang B, Cao Y. ACS Appl. Mater. Interfaces 2017; 9: 4778
    • 8m Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Chem. Rev. 2009; 109: 897
    • 8n Zampetti A, Minotto A, Squeo BM, Gregoriou VG, Allard S, Scherf U, Chochos CL, Cacialli F. Sci. Rep. 2017; 7: 1611
    • 8o Kalyani NT, Dhoble SJ. Renewable Sustainable Energy Rev. 2012; 16: 2696
    • 8p Yamaguchi S, Xu C, Okamoto T. Pure Appl. Chem. 2006; 78: 721
    • 8q Arsenyan P, Petrenko A, Leitonas K, Volyniuk D, Simokaitiene J, Klinavičius T, Skuodis E, Lee J.-H, Gražulevičius JV. Inorg. Chem. 2019; 58: 10174
    • 8r Ghosh T, Lehmann M. J. Mater. Chem. C 2017; 5: 12308
    • 8s Funahashi M, Hanna J.-I. Adv. Mater (Weinheim, Ger.) 2005; 17: 594
    • 8t Mei J, Diao Y, Appleton AL, Fang L, Bao Z. J. Am. Chem. Soc. 2013; 135: 6724
    • 8u Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
    • 8v Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Pron A. Chem. Soc. Rev. 2013; 42: 8895
    • 8w Okamoto T, Yu CP, Mitsui C, Yamagishi M, Ishii H, Takeya J. J. Am. Chem. Soc. 2020; 142: 9083
    • 9a Liu Z, Jiang Y, Liu C, Zhang L, Wang J, Li T, Zhang H, Li M, Yang X. J. Org. Chem. 2020; 85: 7386
    • 9b Ding C, Yu Y, Yu Q, Xie Z, Zhou Y, Zhou J, Song Z. ChemCatChem 2018; 10: 5397
    • 9c Bhunia SK, Das P, Jana R. Org. Biomol. Chem. 2018; 16: 9243
    • 9d Wen Z, Xu J, Wang Z, Qi H, Xu Q, Bai Z, Zhang Q, Bao K, Wu Y, Zhang W. Eur. J. Med. Chem. 2015; 90: 184
    • 9e Kumaraswamy G, Ramesh V, Gangadhar M, Vijaykumar S. Asian J. Org. Chem. 2018; 7: 1689
    • 9f Kumar P, Kashid VS, Mague JT, Balakrishna MS. Tetrahedron Lett. 2014; 55: 5232
    • 9g Bhat MY, Kumar A, Ahmed QN. Tetrahedron 2020; 76: 131105
    • 9h Belladona AL, Cervo R, Alves D, Barcellos T, Cargnelutti R, Schumacher RF. Tetrahedron Lett. 2020; 61: 152035
    • 9i Song Z, Ding C, Wang S, Dai Q, Sheng Y, Zheng Z, Liang G. Chem. Commun. 2020; 56: 1847
    • 9j Xiao F, Xie H, Liu S, Deng G.-J. Adv. Synth. Catal. 2014; 356: 364
    • 9k Bettanin L, Saba S, Doerner CV, Franco MS, Godoi M, Rafique J, Braga AL. Tetrahedron 2018; 74: 3971
    • 9l Rafique J, Saba S, Rosário AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
    • 9m Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J. Org. Chem. 2014; 79: 4125
    • 9n Ge W, Wei Y. Green Chem. 2012; 14: 2066
    • 9o Ferreira NL, Azeredo JB, Fiorentin BL, Braga AL. Eur. J. Org. Chem. 2015; 2015: 5070
    • 9p Yu Y, Zhou Y, Song Z, Liang G. Org. Biomol. Chem. 2018; 16: 4958
    • 9q Rodrigues J, Saba S, Joussef AC, Rafique J, Braga AL. Asian J. Org. Chem. 2018; 7: 1819
    • 10a Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 10b Bauer I, Knölker HJ. Chem. Rev. 2015; 115: 3170
    • 10c Diaz DD, Miranda PO, Padron JI, Martín VS. Curr. Org. Chem. 2006; 10: 457
    • 10d Fürstner A. ACS Cent. Sci. 2016; 2: 778
    • 10e The Chemistry of Organoiron Compounds . Marek I, Rappoport Z. Wiley; Chichester: 2014
    • 10f Iron Catalysis. Fundamentals and Applications. Plietker B. Springer; Heidelberg: 2011
    • 11a Fang XL, Tang R.-Y, Zhong P, Li J.-H. Synthesis 2009; 4183
    • 11b Yadav JS, Reddy BV. S, Reddy YJ, Praneeth K. Synthesis 2009; 1520
    • 11c Luz EQ, Seckler D, Araújo JS, Angst L, Lima DB, Rios EA. M, Rampon DS. Tetrahedron 2019; 75: 1258
  • 12 Rampon DS, Luz EQ, Lima DB, Balaguez RA, Schneider PH, Alves D. Dalton Trans. 2019; 48: 9851
  • 13 da Silva RB, Coelho FL, Rodembusch FS, Schwab RS, Schneider JM. F. M, Rampon DS, Schneider PH. New J. Chem. 2019; 43: 11596
    • 14a Vrkljan PB, Bauer J, Tomisic V. J. Chem. Educ. 2008; 85: 1123
    • 14b Wang X, Stanbury DM. Inorg. Chem. 2006; 45: 3415
    • 14c Nikolaychuk PA, Kuvaeva AO. J. Chem. Educ. 2016; 93: 1267
    • 14d Bauer J, Tomišić V, Vrkljan PB. J. Chem. Educ. 2012; 89: 540
    • 14e Laurence GS, Ellis KJ. J. Chem. Soc., Dalton Trans. 1972; 2229
  • 15 Thomé I, Nijs A, Bolm C. Chem. Soc. Rev. 2012; 41: 979
  • 16 Vieira AA, Azeredo JB, Godoi M, Santi C, da Silva Júnior EN, Braga AL. J. Org. Chem. 2015; 80: 2120
  • 17 Hiller FW, Krueger JH. Inorg. Chem. 1967; 6: 528
  • 18 Monga A, Bagchi S, Sharma A. New J. Chem. 2018; 42: 1551
    • 19a Van Humbeck JF, Simonovich SP, Knowles RR, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 10012
    • 19b Scepaniak JJ, Wright AM, Lewis RA, Wu G, Hayton TW. J. Am. Chem. Soc. 2012; 134: 19350
    • 19c Smith JM, Mayberry DE, Margarit CG, Sutter J, Wang H, Meyer K, Bontchev RP. J. Am. Chem. Soc. 2012; 134: 6516
    • 19d Ahlers C, Dickman MH. Inorg. Chem. 1998; 37: 6337
  • 20 Jiang C, Garg S, Waite TD. Environ. Sci. Technol. 2015; 49: 14076
  • 21 Chalcogenylation of Naphthalene Derivatives Catalyzed by FeCl3 and KI: General Procedure An oven-dried 10 mL glass tube was charged with the appropriate naphthalene derivative 1 (0.5 mmol, 1.0 equiv), diorganoyl dichalcogenide 2 or 4 (0.25 mmol), and KI (5.0 mol%, 4.1 mg). FeCl3 (5.0 mol%, 4.0 mg) was then weighed quickly, dissolved in DMSO (2.0 mL), and added to the glass tube. The mixture was stirred at 110 °C for 24 h then cooled to r.t. and added to sat. aq Na2S2O3 (5.0 mL). The resulting mixture was extracted with EtOAc (3 × 5.0 mL), and the organic extracts were separated, dried (MgSO4), and concentrated under vacuum. The residue was purified by flash chromatography (silica gel, hexane–EtOAc) 1-(Phenylselanyl)-2-naphthol (3a)6d Flash chromatography [silica gel, hexane–EtOAc (90:10)] gave a white solid; yield: 145.1 mg (97%); mp 77–78 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 10.21 (s, 1 H), 8.26 (dd, J = 8.5, 1.1 Hz, 1 H), 7.94 (d, J = 8.9 Hz, 1 H), 7.84 (dd, J = 8.1 and 1.3 Hz, 1 H), 7.46 (ddd, J = 8.4, 6.8, 1.4 Hz, 1 H), 7.36 (d, J = 8.9 Hz, 1 H), 7.32 (ddd, J = 8.0, 6.8, 1.2 Hz, 1 H), 7.16–7.09 (m, 5 H). 13C NMR (100 MHz, DMSO-d 6): δ = 158.1, 146.1, 136.5, 133.3, 132.5, 129.6, 129.1, 128.9, 128.0, 126.9, 126.0, 123.6, 118.6, 108.1. MS (EI): m/z (%) = 300 (32.2) [M+], 298 (16.1), 220 (100.0), 194 (29.9), 115 (80.8), 102 (13.1), 77 (18.9), 51 (30.8).