Synlett 2020; 31(15): 1527-1531
DOI: 10.1055/s-0040-1706868
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine-Promoted Synthesis of 4-Aryl-2-(arylsulfonyl)quinolones by Desulfurative C–S Cross-Coupling Reaction of Quinoline-2-thiones with Sodium Sulfinates

Guo-Chao Yang
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
,
Xi-Chun Wang
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
,
Zheng-Jun Quan
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
› Author Affiliations
We are grateful for the financial support from the National Nature Science Foundation of China (No. 21562036) and the Scientific and Technological Innovation Engineering Program of Northwest Normal University (NWNU-LKQN-15-1).
Further Information

Publication History

Received: 15 February 2020

Accepted after revision: 08 June 2020

Publication Date:
16 July 2020 (online)


Abstract

An iodine-induced sulfonylation of quinoline-2-thiones with sodium arenesulfinates as sulfur sources for the synthesis of 4-aryl-2-(arylsulfonyl)quinoline derivatives is described. The 4-aryl-2-(arylsulfonyl)quinoline derivatives can be obtained in a moderate to good yields. This C–S bond cleavage and C–S cross-coupling proceeds in the absence of a metal under inexpensive and nontoxic conditions and it displays a broad substrate scope.

Supporting Information

 
  • References and Notes

  • 1 Boucherle B, Haudecoeur R, Queiroz EF, De Waard M, Wolfender J.-L, Robins RJ, Boumendjel A. Nat. Prod. Rep. 2016; 33: 1034
  • 2 Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 3a Shang X.-F, Morris-Natschke SL, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Yang G.-Z, Lee K.-H. Med. Res. Rev. 2018; 38: 775
    • 3b Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. J. Nat. Prod. 2005; 68: 1717
    • 3c Tabassum S, Kumara TH. S, Jasinski JP, Millikan SP, Yathirajan HS, Ganapathy PS. S, Sowmya HB. V, More SS, Nagendrappa G, Kaur M, Josea G. J. Mol. Struct. 2014; 1070: 10
  • 4 Marson A, Ernsting JE, Lutz M, Spek AL, van Leeuwen PW. N. M, Kamer PC. J. Dalton Trans. 2009; 621
    • 5a Gorka AP, de Dios A, Roepe PD. J. Med. Chem. 2013; 56: 5231
    • 5b Rouffet M, de Oliveira CA. F, Udi Y, Agrawal A, Sagi I, McCammon JA, Cohen SM. J. Am. Chem. Soc. 2010; 132: 8232
    • 5c Bhalla V, Vij V, Kumar M, Sharma PR, Kaur T. Org. Lett. 2012; 14: 1012
    • 5d Kim JI, Shin I.-S, Kim H, Lee J.-K. J. Am. Chem. Soc. 2005; 127: 1614
    • 5e Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X. Chem. Soc. Rev. 2014; 43: 3259
    • 5f Velusamy M, Chen C.-H, Wen YS, Lin JT, Lin C.-C, Lai C.-H, Chou P.-T. Organometallics 2010; 29: 3912
    • 5g Olah GA, Mathew T, Prakash GK. S. Chem. Commun. 2001; 1696
  • 6 Deeming AS, Russell CJ, Willis MC. Angew. Chem. Int. Ed. 2016; 55: 747
    • 7a El-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem. Rev. 2009; 109: 2315
    • 7b Hassner A, Ghera E, Yechezkel T, Kleiman V, Balasubramanian T, Ostercamp D. Pure Appl. Chem. 2000; 72: 1671
  • 8 Jiang N, Zhai X, Li T, Liu D, Zhang T, Wang B, Gong P. Molecules 2012; 17: 5870
    • 9a Varma RS, Naicker KP. Org. Lett. 1999; 1: 189
    • 9b Jana NK, Verkade JG. Org. Lett. 2003; 5: 3787
    • 9c Piscitelli F, Coluccia A, Brancale A, La Regina G, Sansone A, Giordano C, Balzarini J, Maga G, Zanoli S, Samuele A, Cirilli R, La Torre F, Lavecchia A, Novellino E, Silvestri R. J. Med. Chem. 2009; 52: 1922
    • 10a Cacchi S, Fabrizi G, Goggiamani A, Parisi LM, Bernini R. J. Org. Chem. 2004; 69: 5608
    • 10b Bandgar BP, Bettigeri SV, Phopase J. Org. Lett. 2004; 6: 2105
  • 11 Aziz J, Messaoudi S, Alami M, Hamze A. Org. Biomol. Chem. 2014; 12: 9743
    • 12a Reddy AM, Reddy SP, Sreedhar B. Adv. Synth. Catal. 2010; 352: 1861
    • 12b Li Y, Cheng K, Lu X, Sun J. Adv. Synth. Catal. 2010; 352: 1876
    • 12c Rao H, Yang L, Shuai Q, Li C.-J. Adv. Synth. Catal. 2011; 353: 1701
    • 12d Ueda M, Hartwig J.-F. Org. Lett. 2010; 12: 92
    • 12e Maloney K.-M, Kuethe J.-T, Linn K. Org. Lett. 2011; 13: 102
    • 13a Sawangphon T, Katrun P, Chaisiwamongkhol K, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. Synth. Commun. 2013; 43: 1692
    • 13b Gao J, Pan X, Liu J, Lai J, Chang L, Yuan G. RSC Adv. 2015; 5: 27439
    • 13c Jiang Q, Xu B, Jia J, Zhao A, Zhao Y.-R, Li Y.-Y, He N.-N, Guo C.-C. J. Org. Chem. 2014; 79: 7372
    • 14a Quan Z.-J, Hu W.-H, Jia X.-D, Zhang Z, Da Y.-X, Wang X.-C. Adv. Synth. Catal. 2012; 354: 2939
    • 14b Yan Z.-F, Quan Z.-J, Da Y.-X, Zhang Z, Wang X.-C. Chem. Commun. 2014; 50: 13555
    • 14c Lu H.-L, Guo F.-H, Wang T.-L, Wang X.-C, Quan Z.-J. Synthesis 2020; 52: 893
    • 14d Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D, Wang X.-C. Adv. Synth. Catal. 2014; 356: 325
    • 14e Du B.-X, Quan Z.-J, Da Y.-X, Zhang Z, Wang X.-C. Adv. Synth. Catal. 2015; 357: 1270
    • 14f Yang Q.-L, Quan Z.-J, Du B.-X, Wu S, Li P.-D, Sun Y.-X, Lei Z.-Q, Wang X.-C. Catal. Sci. Technol. 2015; 5: 4522
    • 14g Liu M.-X, Gong H.-P, Quan Z.-J, Wang X.-C. Synlett 2018; 29: 330
    • 15a Guo Y.-J, Lu S, Tian L.-L, Huang E.-L, Hao X.-Q, Zhu X.-J, Shao T, Song M.-P. J. Org. Chem. 2018; 83: 338
    • 15b Liu LK, Chi Y, Jen K.-Y. J. Org. Chem. 1980; 45: 406
    • 15c da Silva Corrêa CM. M, Lindsay AS, Waters WA. J. Chem. Soc. C 1968; 1872
    • 15d Truce WE, Wolf GC. J. Org. Chem. 1971; 36: 1727
    • 15e Truce WE, Heuring DL, Wolf GC. J. Org. Chem. 1974; 39: 238
  • 16 Katrun P, Mueangkaew C, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. J. Org. Chem. 2014; 79: 1778
  • 17 Rong H.-J, Yang C.-F, Chen T, Wang Y.-Q, Ning B.-K. Tetrahedron Lett. 2019; 60: 150970
  • 18 Nath J, Jamir L, Patel BK. Green Chem. Lett. Rev. 2011; 4: 1
  • 19 6-Methyl-4-phenyl-2-tosylquinoline (3a); Typical Procedure The mixture of 6-methyl-4-phenylquinoline-2(1H)-thione (1a; 0.2 mmol, 50 mg), sodium 4-methylbenzenesulfinate (2a; 0.5 mmol, 89 mg), and I2 (0.25 mmol, 26 mg) in DMSO (2 mL) was stirred at 100 °C for 4 h under air. When the reaction was complete (TLC), sat. aq Na2SO3 was added to quench the reaction, and the resulting mixture was extracted with EtOAc (3 × 25 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuum. The residue was purified by column chromatography [silica gel, EtOAc–PE (1:12)] to give a white solid; yield: 64 mg (87%); mp 154–157 ℃. 1H NMR (400 MHz, CDCl3): δ = 8.14 (d, J = 8.8 Hz, 1 H), 8.11 (s, 1 H), 8.05 (d, J = 8.4 Hz, 2 H), 7.70 (s, 1 H), 7.61 (dd, J = 8.8, 8.8 Hz, 1 H), 7.57–7.53 (m, 3 H), 7.50 (m, 7.51–7.50, 2 H), 7.34 (d, J = 8.4 Hz, 2 H), 2.48 (s, 3 H), 2.40 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 157.0, 150.5, 146.7, 144.7, 139.6, 137.2, 136.4, 133.0, 130.5, 129.8, 129.5, 129.0, 129.0, 128.8, 124.5, 117.8, 22.02, 21.6. HRMS (ESI): m/z [M + H]+ calcd for C23H20NO2S: 374.1209; found: 374.1206.