Synlett 2020; 31(16): 1598-1602
DOI: 10.1055/s-0040-1707215
letter
© Georg Thieme Verlag Stuttgart · New York

Concise Total Synthesis of (+)-Atlanticone C

Johanna Proessdorf
,
Andreas Zech
,
Christian Jandl
,
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
› Author Affiliations
This project was supported by the DeutscheForschungsgemeinschaft (Ba 1372/22-1) and by the TUM Graduate School.
Further Information

Publication History

Received: 27 May 2020

Accepted after revision: 24 June 2020

Publication Date:
31 July 2020 (online)


Abstract

The first enantioselective total synthesis of (+)-atlanticone C is described. The complex tricyclic protoilludane core was rapidly assembled by a photochemical reaction cascade starting from an easily accessible indanone precursor (3 steps). Optimization of an enantioselective Corey–Bakshi–Shibata reduction permitted a catalytic chiral reso­lution of the racemic photoproduct (45% over two steps; up to 98% ee). The enantiomerically enriched photoproduct was efficiently transformed into the (+)-enantiomer of atlanticone C (10 steps; 18% yield), and the absolute configuration of naturally occurring (–)-atlanticone C was thereby determined.

Supporting Information

Primary Data

 
  • References and Notes

    • 1a Ayer WA, Browne LM. Tetrahedron 1981; 37: 2199
    • 1b Abraham WR. Curr. Med. Chem. 2001; 8: 583
  • 2 Clericuzio M, Mella M, Toma L, Finzi PV, Vidari G. Eur. J. Org. Chem. 2002; 988
  • 3 McMorris TC, Nair MS. R, Anchel M. J. Am. Chem. Soc. 1967; 89: 4562
  • 4 Takeuchi T, Iinuma H, Momose I, Matsui S. Jpn. Kokai Tokkyo Koho JP 2001-9452 20010117, 2002 .

    • For synthetic approaches to pasteurestins, see:
    • 5a Kögl M, Brecker L, Warrass R, Mulzer J. Angew. Chem. Int. Ed. 2007; 46: 9320
    • 5b Kögl M, Brecker L, Warrass R, Mulzer J. Eur. J. Org. Chem. 2008; 2714
    • 5c Assante G, Dallavalle S, Martino PA. J. Antibiot. 2013; 66: 43
  • 6 For a review, see: Siengalewicz P, Mulzer J, Rinner U. Eur. J. Org. Chem. 2011; 7041

    • For examples, see:
    • 7a Matsumoto T, Miyano K, Kagawa S, Yu S, Ogawa J, Ichihara A. Tetrahedron Lett. 1971; 12: 3521
    • 7b Takeshita H, Iwabuchi H, Kouno I, Iino M, Nomura D. Chem. Lett. 1979; 649
    • 7c de Mayo P, Takeshita H. Can. J. Chem. 1963; 41: 440
    • 7d Furukawa J, Morisaki N, Kobayashi H, Iwasaki S, Nozoe S, Okuda S. Chem. Pharm. Bull. 1985; 33: 440
    • 7e Hansen TV, Skattebøl L, Stenstrom Y. Tetrahedron 2003; 59: 3461

      For reviews on the use of photochemical key steps in natural-product synthesis, see:
    • 8a Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 8b Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 8c Hoffmann N. Chem. Rev. 2008; 108: 1052
    • 8d Iriondo-Alberdi J, Greaney MF. Eur. J. Org. Chem. 2007; 4801
  • 9 Pitaval A, Leboeuf D, Ceccon J, Echavarren AM. Org. Lett. 2013; 15: 4580 ; corrigendum: Org. Lett. 2013, 15, 5146
  • 10 Johnson EP, Vollhardt KP. C. J. Am. Chem. Soc. 1991; 113: 381
  • 11 Zech A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 14629
  • 12 Zech A, Bach T. J. Org. Chem. 2018; 83: 3069
  • 14 Næsborg L, Jandl C, Zech A, Bach T. Angew. Chem. Int. Ed. 2020; 59: 5656
  • 15 rac-5; Typical Procedure (1.5 mmol Scale) Photosubstrate 4 (345 mg, 1.50 mmol, 1.00 equiv) was dissolved in distilled anhyd MeOH (150 mL), and O2 was removed from the solution by purging with argon with sonication for 15 min. The solution was cannulated into three flame-dried 50–60 mL phototubes and irradiated at λ = 350 nm for 5.5 h under argon. The solvent was removed under reduced pressure, and the residue was purified by automated flash chromatography [silica gel (12 g), hexane–EtOAc (10–45%) (24 CV); UV detection] to give a colorless crystalline solid; yield: 166 mg (715 μmol, 48%); mp 114 °C. 1H NMR (400 MHz, C6D6): δ = 6.17 (d, 3J = 3.0 Hz, 1 H, H-2), 5.76 (d, 3J = 3.0 Hz, 1 H, H-1), 4.98 (d, 2J = 6.3 Hz, 1 H, H-4a), 4.57 (d, 2J = 6.3 Hz, 1 H, H-4b), 3.67 (dd, 2J = 11.0 Hz, 3J = 4.1 Hz, 1 H, H-6a), 3.15 (virtual t, 2J 3J = 11.0 Hz, 1 H, H-6b), 2.31–2.26 (m, 1 H, H-7a), 2.04–1.92 (m, 2 H, H-9), 1.89–1.81 (m, 1 H, H-10a), 1.77–1.69 (m, 1 H, H-10b), 1.68–1.63 (m, 1 H, H-6a), 1.19 (s, 3 H, H-11), 1.09 (virtual ddt, 2J = 16.5 Hz, 3J = 13.1 Hz, 4J 4J = 3.6 Hz, 1 H, H-7b). 13C NMR (101 MHz, C6D6): δ = 205.2 (s, C-8), 173.0 (s, C-10a), 144.5 (d, C-1), 137.2 (s, C-7a), 133.2 (d, C-2), 90.7 (t, C-4), 85.6 (s, C-2a), 68.1 (t, C-6), 53.6 (s, C-10b), 38.2 (d, C-6a), 34.5 (t, C-9), 25.9 (t, C-10), 19.5 (t, C-7), 14.3 (q, C-11). Please note that the IUPAC compound numbering for rac-5 (Figure 3) differs from the illudane numbering used in this letter.
    • 16a Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
    • 16b Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986
    • 17a Gritter RJ, Wallace TJ. J. Org. Chem. 1959; 24: 1051
    • 17b Nakamura A, Nakada M. Synthesis 2013; 45: 1421
  • 18 Kita Y, Higuchi K, Yoshida Y, Iio K, Kitagaki S, Ueda K, Akai S, Fujioka H. J. Am. Chem. Soc. 2001; 123: 3214
  • 19 Prasad KR. K, Joshi NN. Tetrahedron: Asymmetry 1996; 7: 3147
  • 20 Knapp KM, Goldfuss B, Knochel P. Chem. Eur. J. 2003; 9: 5259
  • 21 Xu J, Wei T, Zhang Q. J. Org. Chem. 2003; 68: 10146
    • 22a Dale JA, Dull DL, Mosher HS. J. Org. Chem. 1969; 34: 2543
    • 22b Dull DL, Mosher HS. J. Am. Chem. Soc. 1967; 89: 4230
    • 22c Dale JA, Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
  • 23 Hoye T, Jeffrey C, Shao F. Nat. Protoc. 2007; 2: 2451
  • 24 Neises B, Steglich W. Angew. Chem. Int. Ed. 1978; 17: 522
  • 25 CCDC 2004640 contains the supplementary crystallographic data for compound 7a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 26 Srikrishna A, Dethe DH. Org. Lett. 2003; 5: 2295
    • 27a Kabalka GW, Hutchins R, Natale NR, Yang DT. C, Broach V. Org. Synth. Coll. Vol. VI . Wiley; London: 1988: 293
    • 27b Shreshta ML, Qi W, McIntosh C. J. Org. Chem. 2017; 82: 8359
    • 28a Fujita K, Schloser M. Helv. Chim. Acta 1982; 65: 1258
    • 28b Hoffmann RW, Feussner G, Zeiss H.-J, Schulz S. J. Organomet. Chem. 1980; 187: 321
  • 29 Salmond WG, Barta MA, Havens JL. J. Org. Chem. 1978; 43: 2057