Synlett 2020; 31(19): 1947-1952
DOI: 10.1055/s-0040-1707280
letter

Integrated Synthesis of Thienyl Thioethers and Thieno[3,2-b]thiophenes via 1-Benzothiophen-3(2H)-ones

a  Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: mitsudo@cc.okayama-u.ac.jp   Email: suga@cc.okayama-u.ac.jp
,
Nanae Habara
a  Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: mitsudo@cc.okayama-u.ac.jp   Email: suga@cc.okayama-u.ac.jp
,
Yoshiaki Kobashi
a  Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: mitsudo@cc.okayama-u.ac.jp   Email: suga@cc.okayama-u.ac.jp
,
Yuji Kurimoto
a  Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: mitsudo@cc.okayama-u.ac.jp   Email: suga@cc.okayama-u.ac.jp
,
Hiroki Mandai
b  Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
,
Seiji Suga
a  Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: mitsudo@cc.okayama-u.ac.jp   Email: suga@cc.okayama-u.ac.jp
› Author Affiliations
This work was supported in part by JSPS KAKENHI grants numbers JP16K05695, JP16K05777, JP19K05477, JP19K05478, and JP18H04455 in Middle Molecular Strategy, and by the Okayama Foundation for Science and Technology.


Abstract

A one-pot procedure for the synthesis of thienyl thioethers is described. Several thienyl thioethers were synthesized by a TfOH-promoted Friedel–Crafts-type cyclization, a subsequent nucleophilic attack by an arenethiol, and dehydration. This protocol was successfully applied to the synthesis of thienoacene derivatives by using a Pd-catalyzed dehydrogenative cyclization.

Supporting Information



Publication History

Received: 20 January 2020

Accepted after revision: 05 August 2020

Publication Date:
21 September 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2016; 16: 1200
    • 2a Li L, Zhao C, Wang H. Chem. Rec. 2016; 16: 797
    • 2b Cinar ME, Ozturk T. Chem. Rev. 2015; 115: 3036
    • 2c Takimiya K, Osaka I, Mori T, Nakano M. Acc. Chem. Res. 2014; 47: 1493
    • 2d Takimiya K, Nakano M, Kang MJ, Miyazaki E, Osaka I. Eur. J. Org. Chem. 2013; 217
    • 2e Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. (Weinheim, Ger.) 2011; 23: 4347
    • 3a Bunker AM, Edmunds JJ, Berryman KA, Walker DM, Flynn MA, Welch KM, Doherty AM. Bioorg. Med. Chem. Lett. 1996; 6: 1367
    • 3b Sall DJ, Bailey DL, Bastian JA, Buben JA, Chirgadze NY, Clemens-Smith AC, Denney ML, Fisher MJ, Giera DD, Gifford-Moore DS, Harper RW, Johnson LM, Klimkowski VJ, Kohn TJ, Lin H.-S, Takeuchi K, Toth JE, Zhang M. J. Med. Chem. 2000; 43: 649
    • 4a Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SC. B, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat. Commun. 2014; 5: 3005
    • 4b Niebel C, Kim Y, Ruzié C, Karpinska J, Chattopadhyay B, Schweicher G, Richard A, Lemaur V, Olivier Y, Cornil J, Kennedy AR, Diao Y, Lee W.-Y, Mannsfeld S, Bao Z, Geerts YH. J. Mater. Chem. C 2015; 3: 674
    • 4c Grigoriadis C, Niebel C, Ruzié C, Geerts YH, Floudas G. J. Phys. Chem. B 2014; 118: 1443
    • 4d Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. J. Am. Chem. Soc. 2007; 129: 15732
    • 5a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 5b Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706

      For representative examples of transition-metal-catalyzed dehydrogenative C–S coupling reactions, see:
    • 6a Gensch T, Klauck FJ, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
    • 6b Xu W, Hei Y.-Y, Song J.-L, Zhan X.-C, Zhang X.-G, Deng C.-L. Synthesis 2019; 51: 545
    • 6c Wang X, Yi X, Xu H, Dai H.-X. Org. Lett. 2019; 21: 5981
    • 6d Tian L.-L, Lu S, Zhang Z.-H, Huang E.-L, Yan H.-T, Zhu X.-J, Hao X.-Q, Song M.-P. J. Org. Chem. 2019; 84: 5213
    • 6e Nishino K, Tsukahara S, Ogiwara Y, Sakai N. Eur. J. Org. Chem. 2019; 1588
    • 6f Lu S, Zhu Y.-S, Yan K.-X, Cui T.-W, Zhu X.-J, Hao X.-Q, Song M.-P. Synlett 2019; 30: 1924
    • 6g Kang Y.-S, Zhang P, Li M.-Y, Chen Y.-K, Xu H.-J, Zhao J, Sun W.-Y, Yu J.-Q, Lu Y. Angew. Chem. Int. Ed. 2019; 58: 9099
    • 6h Jiang Y, Feng Y.-y, Zou J.-x, Lei S, Hu X.-l, Yin G.-f, Tan W, Wang Z. J. Org. Chem. 2019; 84: 10490
    • 6i Gu L, Fang X, Weng Z, Song Y, Ma W. Eur. J. Org. Chem. 2019; 1825
    • 6j Li M, Wang J. Org. Lett. 2018; 20: 6490

      For electrochemical C–S coupling reactions, see:
    • 7a Wang P, Tang S, Huang P, Lei A. Angew. Chem. Int. Ed. 2017; 56: 3009
    • 7b Ogawa KA, Boydston AJ. Org. Lett. 2014; 16: 1928
    • 7c Wang P, Tang S, Lei A. Green Chem. 2017; 19: 2092
    • 7d Liu D, Ma H.-X, Fang P, Mei T.-S. Angew. Chem. Int. Ed. 2019; 58: 5033
    • 7e Liang S, Zeng C.-C, Tian H.-Y, Sun B.-G, Luo X.-G, Ren F. Adv. Synth. Catal. 2018; 360: 1444
    • 7f Folgueiras-Amador AA, Qian X.-Y, Xu H.-C, Wirth T. Chem. Eur. J. 2018; 24: 487
    • 7g Huang C, Qian X.-Y, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 6650
    • 7h Mitsudo K, Matsuo R, Yonezawa T, Inoue H, Mandai H, Suga S. Angew. Chem., Int. Ed. 2020; 59: 7803

      For light-driven C–S coupling reactions, see:
    • 8a Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
    • 8b Hong B, Lee J, Lee A. Tetrahedron Lett. 2017; 58: 2809
    • 8c Kibriya G, Mondal S, Hajra A. Org. Lett. 2018; 20: 7740
    • 8d Liu B, Lim C.-H, Miyake GM. Synlett 2018; 29: 2449
    • 8e Li G, Yan Q, Gan Z, Li Q, Dou X, Yang D. Org. Lett. 2019; 21: 7938
    • 8f Li R, Shi T, Chen X.-L, Lv Q.-Y, Zhang Y.-L, Peng Y.-Y, Qu L.-B, Yu B. New J. Chem. 2019; 43: 13642
    • 8g Blank L, Fagnoni M, Protti S, Reuping M. Synthesis 2019; 51: 1243
    • 8h Shieh Y.-C, Du K, Basha RS, Xue Y.-J, Shih B.-H, Li L. J. Org. Chem. 2019; 84: 6223
    • 9a Ahmed M, Briggs MA, Bromidge SM, Buck T, Campbell L, Deeks NJ, Garner A, Gordon L, Hamprecht DW, Holland V, Johnson CN, Medhurst AD, Mitchell DJ, Moss SF, Powles J, Seal JT, Stean TO, Stemp G, Thompson M, Trail B, Upton N, Winborn K, Witty DR. Bioorg. Med. Chem. Lett. 2005; 15: 4867
    • 9b Fernández-Salas JA, Pulis AP, Procter DJ. Chem. Commun. 2016; 52: 12364
    • 9c Kawashima H, Yanagi T, Wu C.-C, Nogi K, Yorimitsu H. Org. Lett. 2017; 19: 4552

      For representative examples, see:
    • 10a Werner LH, Schroeder DC, Ricca SJr. J. Am. Chem. Soc. 1957; 79: 1675
    • 10b Padmavathi V, Padmaja A, Reddy DB. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1999; 38: 308
    • 10c Reddy DB, Padmaja A, Reddy MM, Reddy PV. R. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1995; 34: 427
    • 10d Zweig JE, Newhouse TR. J. Am. Chem. Soc. 2017; 139: 10956
  • 12 Further details of the base optimizations, see SI, Table S6.
  • 13 3-(4-Tolylsulfanyl)-1-benzothiophene (3a): One-Pot Synthesis; Typical Procedure TfOH (0.136 mL, 231 mg, 1.54 mmol) was added dropwise to a solution of (phenylsulfanyl)acetic acid (1a; 33.6 mg, 0.20 mmol) in anhyd DCE (0.3 mL), and the resulting mixture was stirred at 40 °C for 3 h then cooled to 0 °C. 4-Methylbenzenethiol (24.8 mg, 0.20 mmol) and 2,6-lutidine (0.18 mL, 1.5 mmol) were added, and the mixture was stirred at 80 °C for 18 h then cooled to r.t. The reaction was quenched with sat. aq NaHCO3 (3 mL), and the mixture was extracted with CHCl3 (3 × 5 mL). The combined organic phase was dried (MgSO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane) to give a colorless liquid; yield: 32.3 mg (0.13 mmol, 63%).IR (neat): 3096, 3021, 1595, 1254, 1016 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.28 (s, 3 H), 7.03 (d, J = 8.4 Hz, 2 H), 7.11 (d, J = 8.4 Hz, 2 H), 7.35–7.40 (m, 2 H), 7.62 (s, 1 H), 7.78–7.83 (m, 1 H), 7.86–7.90 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.9, 122.9, 123.0, 124.7, 124.9, 125.0, 128.4, 129.8, 130.8, 132.5, 136.0, 138.8, 140.0.
  • 14 For details of the calculations, see SI.
  • 15 Li X, Ye S, He C, Yu Z.-X. Eur. J. Org. Chem. 2008; 4296
    • 16a Saito K, Chikkade PK, Kanai M, Kuninobu Y. Chem. Eur. J. 2015; 21: 8365
    • 16b Kaida H, Satoh T, Hirano K, Miura M. Chem. Lett. 2015; 44: 1125
    • 16c Kurimoto Y, Mitsudo K, Mandai H, Wakamiya A, Murata Y, Mori H, Nishihara Y, Suga S. Asian J. Org. Chem. 2018; 7: 1635
    • 16d Mitsudo K, Kurimoto Y, Mandai H, Suga S. Org. Lett. 2017; 19: 2821
  • 17 The structure of 4o was confirmed by X-ray crystal structure analysis. CCDC 1961314 contains the supplementary crystallographic data for compound 4o. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 18 For details, see SI.