Synlett 2020; 31(15): 1517-1522
DOI: 10.1055/s-0040-1707891
letter
© Georg Thieme Verlag Stuttgart · New York

Silver-Catalyzed Decarboxylative Radical Addition/Cyclization of Oxamic Acids with Alkenes towards Quinolin-2-ones

Chengan Jin
,
Jing-Yao He
,
Qi-Fan Bai
,
Gaofeng Feng
College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. of China   Email: chfeng@usx.edu.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21302130 and 21676166), the Science and Technology Department of Zhejiang Province (2014C31141 and LGG20B060002), and the Department of Education of Zhejiang Province (Y201941045) are acknowledged with thanks.
Further Information

Publication History

Received: 16 April 2020

Accepted after revision: 21 May 2020

Publication Date:
21 July 2020 (online)


Abstract

An efficient silver-catalyzed tandem decarboxylative radical addition/cyclization of oxamic acids with alkenes has been developed. This method provides a novel and straightforward protocol toward a variety of 4-aryl-3,4-dihydroquinolin-2(1H)-ones, 4-(α-carbonyl)-3,4-dihydroquinolin-2(1H)-ones, and quinolin-2(1H)-ones in aqueous solution.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Morita S, Irie Y, Saitoh Y, Kohri H. Biochem. Pharmacol. 1976; 25: 1837
    • 1b Hayashi H, Miwa Y, Miki I, Ichikawa S, Yoda N, Ishii A, Kono M, Suzuki F. J. Med. Chem. 1992; 35: 4893
    • 1c Hanuman JB, Katz A. Nat. Prod. Lett. 1993; 3: 227
    • 1d Leeson P.-D, Baker R, Carling R.-W, Kulagowski J.-J, Mawer I.-M, Ridgill M.-P, Rowley M, Smith J.-D, Stansfield I, Stevenson G.-I, Foster A.-C, Kemp J.-A. Bioorg. Med. Chem. Lett. 1993; 3: 299
    • 1e Chen M.-H, Fitzgerald P, Singh SB, O’Neill EA, Schwartz CD, Thompson CM, O’Keefe SJ, Zaller DM, Doherty JB. Bioorg. Med. Chem. Lett. 2008; 18: 2222
    • 1f Kraus JM, Verlinde CL. M. J, Karimi M, Lepesheva GI, Gelb MH, Buckner FS. J. Med. Chem. 2009; 52: 1639 ; corrigendum: J. Med. Chem. 2009, 52, 4549
    • 1g Claassen G, Brin E, Crogan-Grundy C, Vaillancourt MT, Zhang HZ, Cai SX, Drewe J, Tseng B, Kasibhatla S. Cancer Lett. 2009; 274: 243
    • 1h Cheng P, Zhang Q, Ma Y.-B, Jiang Z.-Y, Zhang X.-M, Zhang F.-X, Chen J.-J. Bioorg. Med. Chem. Lett. 2008; 18: 3787
    • 2a Anzini M, Cappelli A, Vomero S. J. Heterocycl. Chem. 1991; 28: 1809
    • 2b Godard A, Fourquez JM, Tamion R, Marsais F, Quéguiner G. Synlett 1994; 235
    • 2c Guarna A, Lombardi E, Machetti F, Occhiato EG, Scarpi D. J. Org. Chem. 2000; 65: 8093
    • 3a Conley RT, Knopka WN. J. Org. Chem. 1964; 29: 496
    • 3b Manimaran T, Thiruvengadam TK, Ramakrishnan VT. Synthesis 1975; 739
    • 3c Elliott MC, Wordingham SV. Synlett 2004; 898

      For selected examples, see:
    • 4a Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org. Lett. 2009; 11: 1043
    • 4b Felpin X.-F, Coste J, Zakri C, Fouquet E. Chem. Eur. J. 2009; 15: 7238
    • 4c Zhang L, Sonaglia L, Stacey J, Lautens M. Org. Lett. 2013; 15: 2128
    • 4d Wu J, Xiang S, Zeng J, Leow M, Liu X.-W. Org. Lett. 2014; 17: 222
    • 4e Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 3568
    • 4f Li B, Park Y, Chang S. J. Am. Chem. Soc. 2014; 136: 1125
    • 4g El Ali B, Okuro K, Vasapollo G, Alper H. J. Am. Chem. Soc. 1996; 118: 4264

      For selected examples, see:
    • 5a Wu T, Mu X, Liu G. Angew. Chem. Int. Ed. 2011; 50: 12578
    • 5b Mai W.-P, Wang J.-T, Yang L.-R, Yuan J.-W, Xiao Y.-M, Mao P, Qu L.-B. Org. Lett. 2013; 16: 204
    • 5c Zhou S.-L, Guo L.-N, Wang S, Duan X.-H. Chem. Commun. 2014; 50: 3589
    • 5d Mai W.-P, Sun G.-C, Wang J.-T, Song G, Mao P, Yang L.-R, Yuan J.-W, Xiao Y.-M, Qu L.-B. J. Org. Chem. 2014; 79: 8094
    • 5e Wang F.-X, Tian S.-K. J. Org. Chem. 2015; 80: 12697
    • 5f Gao F, Yang C, Gao G.-L, Zheng L, Xia W. Org. Lett. 2015; 17: 3478
    • 5g Wang Q, Han G, Liu Y, Wang Q. Adv. Synth. Catal. 2015; 357: 2464
    • 5h Zhang H, Gu Z, Li Z, Pan C, Li W, Hu H, Zhu C. J. Org. Chem. 2016; 81: 2122
    • 5i Wang K, Chen X, Yuan M, Yao M, Zhu H, Xue Y, Luo Z, Zhang Y. J. Org. Chem. 2018; 83: 1525
    • 5j Wu J, Zhang J.-Y, Gao P.-G, Xu S.-L, Guo L.-N. J. Org. Chem. 2018; 83: 1046
    • 5k Cui Z, Du D.-M. J. Org. Chem. 2018; 83: 5149
    • 5l Ling A, Zhang L, Tan RX, Liu Z.-Q. J. Org. Chem. 2018; 83: 14489
    • 5m Ren H, Zhang M, Zhang A. Synthesis 2018; 50: 575
    • 5n Gao R.-X, Luan X.-Q, Xie Z.-Y, Yang L, Pei Y. Org. Biomol. Chem. 2019; 17: 5262
    • 6a Minisci F, Coppa F, Fontana F. J. Chem. Soc., Chem. Commun. 1994; 679
    • 6b Minisci F, Fontana F, Coppa F, Yan YM. J. Org. Chem. 1995; 60: 5430
    • 7a Pawar GG, Robert F, Grau E, Cramail H, Landais Y. Chem. Commun. 2018; 54: 9337
    • 7b DiLabio GA, Scanlan EM, Walton JC. Org. Lett. 2005; 7: 155
    • 7c Kim I, Kang G, Lee K, Park B, Kang D, Jung H, He Y.-T, Baik M.-H, Hong S. J. Am. Chem. Soc. 2019; 141: 9239
    • 7d Jatoi A.-H, Pawar G.-G, Robert F, Landais Y. Chem. Commun. 2019; 55: 466
    • 8a Millán-Ortiz A, López-Valdez G, Cortez-Guzmán F, Miranda L.-D. Chem. Commun. 2015; 51: 8345
    • 8b Betou M, Male L, Steed J.-W, Grainger R.-S. Chem. Eur. J. 2014; 20: 6505
    • 8c López-Valdez G, Olguín-Uribe S, Miranda L.-D. Tetrahedron Lett. 2007; 48: 8285
  • 9 Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
  • 10 Bai Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
  • 11 Fan H, Pan P, Zhang Y, Wang W. Org. Lett. 2018; 20: 7929
  • 12 Chen G, Li C, Peng J, Yuan Z, Liu P, Liu X. Org. Biomol. Chem. 2019; 17: 8527
    • 13a Feng G, Jin C, Bai Q.-F, He J.-Y, Wu L. CN 108047133, 2018
    • 13b Feng G, Jin C, Bai Q.-F, He J.-Y, Wu L. CN 107987017, 2018
  • 14 Quinolin-2(1H)-ones 3, 5, and 7; General Procedure A 10 mL reaction vial was charged sequentially with the appropriate oxamic acid 1 (0.3 mmol, 1.0 equiv), AgNO3 (0.03 mmol, 10 mol%), Na2S2O8 (0.6 mmol, 2.0 equiv), MeCN (1.5 mL), and H2O (1.5 mL). The vial was closed and bubbled with N2 for 5 min. The appropriate alkene 2, 4, or 6 (0.9 mmol, 3.0 equiv) was then injected into the vial, and the mixture was stirred at 80 °C for 36 h. The resulting mixture was diluted with EtOAc (40 mL) and H2O (10 mL), and the organic layer was recovered, washed with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc–PE). 6-Chloro-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one (3f) Colorless oil; yield: 57.7 mg (71%; 0.3 mmol scale). IR (film): 2928, 1676, 1491, 1416, 1360, 1267, 1130 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.33 (m, 2 H), 7.30–7.23 (m, 2 H), 7.15–7.13 (m, 2 H), 6.96 (d, J = 8.4 Hz, 1 H), 6.87 (dd, J = 2.0, 0.4 Hz, 1 H), 4.19 (t, J = 7.2 Hz, 1 H), 3.36 (s, 3 H), 2.95 (d, J = 3.6 Hz, 1 H), 2.93 (d, J = 1.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 169.1, 140.2, 139.0, 131.0, 129.1, 128.4, 128.0, 127.8, 127.5, 116.2, 41.4, 38.5, 29.7. GC/MS: m/z (%) = 228 (68), 271 (100) [M+].