CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2021; 40(03): e288-e293
DOI: 10.1055/s-0040-1719004
Technical Note | Nota Técnica

Minimally Invasive Mini-orbitozygomatic Approach for Clipping an Anterior Communicating Artery Aneurysm: Virtual Reality Surgical Planning

Abordagem mini-orbitozigomático minimamente invasiva para clipagem de um aneurisma da artéria comunicante anterior: planejamento cirúrgico de realidade virtual
1   Department of Neurosurgery, Hospital Regional Rancagua, Rancagua, Chile
,
1   Department of Neurosurgery, Hospital Regional Rancagua, Rancagua, Chile
› Author Affiliations

Abstract

Virtual reality (VR) has increasingly been implemented in neurosurgical practice. A patient with an unruptured anterior communicating artery (AcoA) aneurysm was referred to our institution. Imaging data from computed tomography angiography (CTA) was used to create a patient specific 3D model of vascular and skull base anatomy, and then processed to a VR compatible environment. Minimally invasive approaches (mini-pterional, supraorbital and mini-orbitozygomatic) were simulated and assessed for adequate vascular exposure in VR. Using an eyebrow approach, a mini-orbitozygomatic approach was performed, with clip exclusion of the aneurysm from the circulation. The step-by-step process of VR planning is outlined, and the advantages and disadvantages for the neurosurgeon of this technology are reviewed.

Resumo

A realidade virtual (RV) é uma ferramenta cada vez mais utilizada na prática neurocirúrgica. Apresentamos um caso de aneurisma da artéria comunicante anterior (AcoA) sem rompimento com planejamento cirúrgico por RV. Os dados da angiografia por tomografia computadorizada (ATC) DICOM foram usados para a criação de um modelo 3D da anatomia vascular e da base do crânio do paciente, seguido de análise em um ambiente compatível com RV. Abordagens minimamente invasivas (mini-pterional, supraorbital e mini-orbitozigomática) foram simuladas e avaliadas quanto à exposição vascular adequada na RV. Utilizando uma abordagem pela sobrancelha, foi realizada uma abordagem mini-orbitozigomática, com exclusão do aneurisma da circulação. O processo passo a passo do planejamento da RV foi descrito e foram revisadas as vantagens e desvantagens desta tecnologia.



Publication History

Received: 11 April 2020

Accepted: 24 August 2020

Article published online:
26 November 2020

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Bernardo A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurg 2017; 106: 1015-1029
  • 2 Bernardo A. Establishment of Next-Generation Neurosurgery Research and Training Laboratory with Integrated Human Performance Monitoring. World Neurosurg 2017; 106: 991-1000
  • 3 Rubio RR, Bonaventura RD, Kournoutas I. et al. Stereoscopy in Surgical Neuroanatomy: Past, Present, and Future. Oper Neurosurg (Hagerstown) 2020; 18 (02) 105-117
  • 4 Figueiredo EG, Deshmukh P, Nakaji P. et al. The minipterional craniotomy: technical description and anatomic assessment. Neurosurgery 2007;61(05, Suppl 2):256–264, discussion 264–265
  • 5 Fischer G, Stadie A, Reisch R. et al. The keyhole concept in aneurysm surgery: results of the past 20 years. Neurosurgery 2011;68(01, Suppl Operative) 45–51, discussion 51
  • 6 Yagmurlu K, Safavi-Abbasi S, Belykh E. et al. Quantitative anatomical analysis and clinical experience with mini-pterional and mini-orbitozygomatic approaches for intracranial aneurysm surgery. J Neurosurg 2017; 127 (03) 646-659
  • 7 de Faria JW, Teixeira MJ, de Moura Sousa Júnior L, Otoch JP, Figueiredo EG. Virtual and stereoscopic anatomy: when virtual reality meets medical education. J Neurosurg 2016; 125 (05) 1105-1111
  • 8 Bernard F, Gallet C, Fournier HD, Laccoureye L, Roche PH, Troude L. Toward the development of 3-dimensional virtual reality video tutorials in the French neurosurgical residency program. Example of the combined petrosal approach in the French College of Neurosurgery. Neurochirurgie 2019; 65 (04) 152-157
  • 9 Shao X, Yuan Q, Qian D. et al. Virtual reality technology for teaching neurosurgery of skull base tumor. BMC Med Educ 2020; 20 (01) 3
  • 10 Alaraj A, Luciano CJ, Bailey DP. et al. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 2015; 11 (Suppl. 02) 52-58
  • 11 Bairamian D, Liu S, Eftekhar B. Virtual Reality Angiogram vs 3-Dimensional Printed Angiogram as an Educational tool-A Comparative Study. Neurosurgery 2019; 85 (02) E343-E349
  • 12 Raabe C, Fichtner J, Beck J, Gralla J, Raabe A. Revisiting the rules for freehand ventriculostomy: a virtual reality analysis. J Neurosurg 2018; 128 (04) 1250-1257
  • 13 Peh S, Chatterjea A, Pfarr J. et al. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device. Spine J 2020; 20 (04) 629-637
  • 14 Tai AX, Sack KD, Herur-Raman A, Jean WC. The Benefits of Limited Orbitotomy on the Supraorbital Approach: An Anatomic and Morphometric Study in Virtual Reality. Oper Neurosurg (Hagerstown) 2020; 18 (05) 542-550
  • 15 Morone PJ, Shah KJ, Hendricks BK, Cohen-Gadol AA. Virtual, 3-Dimensional Temporal Bone Model and Its Educational Value for Neurosurgical Trainees. World Neurosurg 2019; 122: e1412-e1415