CC BY-NC-ND 4.0 · Semin Reprod Med 2020; 38(02/03): 179-196
DOI: 10.1055/s-0040-1719084
Review Article

Physiomimetic Models of Adenomyosis

Juan S. Gnecco
1   Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
2   Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
,
Alex T. Brown
1   Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
2   Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
,
Ellen L. Kan
1   Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
2   Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
,
Lauren Baugh
1   Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
2   Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
,
Clara Ives
1   Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
2   Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
,
Megan Loring
1   Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
3   Endometriosis and Adenomyosis Care Collaborative, Center for Minimally Invasive Gynecologic Surgery, Newton Wellesley Hospital, Newton, Massachusetts
,
Linda G. Griffith
1   Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
2   Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
› Author Affiliations
Funding National Institutes of Health http://dx.doi.org/10.13039/100000002 EB029132 National Science Foundation http://dx.doi.org/10.13039/100000001

Abstract

Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial–stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.



Publication History

Article published online:
09 November 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol 2020; 10: 1662
  • 2 Benagiano G, Habiba M, Brosens I. The pathophysiology of uterine adenomyosis: an update. Fertil Steril 2012; 98 (03) 572-579
  • 3 Chapron C, Tosti C, Marcellin L. et al. Relationship between the magnetic resonance imaging appearance of adenomyosis and endometriosis phenotypes. Hum Reprod 2017; 32 (07) 1393-1401
  • 4 García-Solares J, Donnez J, Donnez O, Dolmans MM. Pathogenesis of uterine adenomyosis: invagination or metaplasia?. Fertil Steril 2018; 109 (03) 371-379
  • 5 Habiba M, Gordts S, Bazot M, Brosens I, Benagiano G. Exploring the challenges for a new classification of adenomyosis. Reprod Biomed Online 2020; 40 (04) 569-581
  • 6 Munro MG, Critchley HO, Broder MS, Fraser IS. FIGO Working Group on Menstrual Disorders. FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int J Gynaecol Obstet 2011; 113 (01) 3-13
  • 7 Tellum T, Qvigstad E, Skovholt EK, Lieng M. In vivo adenomyosis tissue sampling using a transvaginal ultrasound-guided core biopsy technique for research purposes: safety, feasibility, and effectiveness. J Minim Invasive Gynecol 2019; 26 (07) 1357-1362
  • 8 Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Primers 2018; 4 (01) 9
  • 9 Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Heterogeneity of endometriosis lesions requires individualisation of diagnosis and treatment and a different approach to research and evidence based medicine. Facts Views Vis ObGyn 2019; 11 (01) 57-61
  • 10 Osuga Y, Fujimoto-Okabe H, Hagino A. Evaluation of the efficacy and safety of dienogest in the treatment of painful symptoms in patients with adenomyosis: a randomized, double-blind, multicenter, placebo-controlled study. Fertil Steril 2017; 108 (04) 673-678
  • 11 Vannuccini S, Tosti C, Carmona F. et al. Pathogenesis of adenomyosis: an update on molecular mechanisms. Reprod Biomed Online 2017; 35 (05) 592-601
  • 12 Inoue S, Hirota Y, Ueno T. et al. Uterine adenomyosis is an oligoclonal disorder associated with KRAS mutations. Nat Commun 2019; 10 (01) 5785
  • 13 Shaked S, Jaffa AJ, Grisaru D, Elad D. Uterine peristalsis-induced stresses within the uterine wall may sprout adenomyosis. Biomech Model Mechanobiol 2015; 14 (03) 437-444
  • 14 Beste MT, Pfäffle-Doyle N, Prentice EA. et al. Molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation. Sci Transl Med 2014; 6 (222) 222ra16
  • 15 Miller MA, Meyer AS, Beste MT. et al. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 2013; 110 (22) E2074-E2083
  • 16 Shafrir AL, Missmer SA. Towards subtypes - deep endometriosis oestrogen receptor-α expression. Nat Rev Endocrinol 2020; 16 (10) 541-542
  • 17 Zondervan KT, Rahmioglu N, Morris AP. et al. Beyond endometriosis genome-wide association study: from genomics to phenomics to the patient. Semin Reprod Med 2016; 34 (04) 242-254
  • 18 Conklin JE, Lieberman JV, Barnes CA, Louis DZ. Disease staging: implications for hospital reimbursement and management. Health Care Financ Rev 1984; 1984: 13-22
  • 19 Gonnella JS, Hornbrook MC, Louis DZ. Staging of disease. A case-mix measurement. JAMA 1984; 251 (05) 637-644
  • 20 Gonella J, Louis DZ, Guozum MVE, Callahan CA, Barnes CA. Disease staging. In: Gonella J. ed. Disease Staging. MI: Ann Arbor; 2001: 927
  • 21 Munro MG, Critchley HOD, Fraser IS. FIGO Menstrual Disorders Committee. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int J Gynaecol Obstet 2018; 143 (03) 393-408
  • 22 Driehuis E, van Hoeck A, Moore K. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci U S A 2019; 116 (52) 26580-26590
  • 23 Vitonis AF, Vincent K, Rahmioglu N. et al. WERF EPHect Working Group. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: II. Clinical and covariate phenotype data collection in endometriosis research. Fertil Steril 2014; 102 (05) 1223-1232
  • 24 Rahmioglu N, Fassbender A, Vitonis AF. et al. WERF EPHect Working Group. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: III. Fluid biospecimen collection, processing, and storage in endometriosis research. Fertil Steril 2014; 102 (05) 1233-1243
  • 25 Pugliese A, Yang M, Kusmarteva I. et al. The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes (nPOD) program: goals, operational model and emerging findings. Pediatr Diabetes 2014; 15 (01) 1-9
  • 26 Gordts S, Campo R, Brosens I. Hysteroscopic diagnosis and excision of myometrial cystic adenomyosis. Gynecol Surg 2014; 11 (04) 273-278
  • 27 Critchley HO, Jones RL, Lea RG. et al. Role of inflammatory mediators in human endometrium during progesterone withdrawal and early pregnancy. J Clin Endocrinol Metab 1999; 84 (01) 240-248
  • 28 Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. Physiology of the endometrium and regulation of menstruation. Physiol Rev 2020; 100 (03) 1149-1179
  • 29 Vigano P, Candiani M, Monno A, Giacomini E, Vercellini P, Somigliana E. Time to redefine endometriosis including its pro-fibrotic nature. Hum Reprod 2018; 33 (03) 347-352
  • 30 Thiruchelvam U, Dransfield I, Saunders PT, Critchley HO. The importance of the macrophage within the human endometrium. J Leukoc Biol 2013; 93 (02) 217-225
  • 31 Osteen KG, Rodgers WH, Gaire M, Hargrove JT, Gorstein F, Matrisian LM. Stromal-epithelial interaction mediates steroidal regulation of metalloproteinase expression in human endometrium. Proc Natl Acad Sci U S A 1994; 91 (21) 10129-10133
  • 32 Henderson TA, Saunders PT, Moffett-King A, Groome NP, Critchley HO. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab 2003; 88 (01) 440-449
  • 33 Myers KM, Elad D. Biomechanics of the human uterus. Wiley Interdiscip Rev Syst Biol Med 2017;9(05):
  • 34 Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update 2010; 16 (06) 725-744
  • 35 Mehasseb MK, Bell SC, Pringle JH, Habiba MA. Uterine adenomyosis is associated with ultrastructural features of altered contractility in the inner myometrium. Fertil Steril 2010; 93 (07) 2130-2136
  • 36 Guo SW, Mao X, Ma Q, Liu X. Dysmenorrhea and its severity are associated with increased uterine contractility and overexpression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil Steril 2013; 99 (01) 231-240
  • 37 Brosens JJ, Barker FG, de Souza NM. Myometrial zonal differentiation and uterine junctional zone hyperplasia in the non-pregnant uterus. Hum Reprod Update 1998; 4 (05) 496-502
  • 38 Benagiano G, Brosens I, Habiba M. Structural and molecular features of the endomyometrium in endometriosis and adenomyosis. Hum Reprod Update 2014; 20 (03) 386-402
  • 39 Strauss JF, Lessey BA. eds. The structure, function, and evaluation of the female reproductive tract. In: Yen & Jaffe's Reproductive Endocrinology, Elsevier, NY. 2009: 191-233
  • 40 Leyendecker G, Wildt L. A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR). Horm Mol Biol Clin Investig 2011; 5 (02) 125-142
  • 41 Ibrahim MG, Chiantera V, Frangini S. et al. Ultramicro-trauma in the endometrial-myometrial junctional zone and pale cell migration in adenomyosis. Fertil Steril 2015; 104 (06) 1475-83.e1 , 3
  • 42 Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol 2016; 428: 1-16
  • 43 Kobayashi H, Kishi Y, Matsubara S. Mechanisms underlying adenomyosis-related fibrogenesis. Gynecol Obstet Invest 2020; 85 (01) 1-12
  • 44 Li T, Li YG, Pu DM. Matrix metalloproteinase-2 and -9 expression correlated with angiogenesis in human adenomyosis. Gynecol Obstet Invest 2006; 62 (04) 229-235
  • 45 Guo SW. Fibrogenesis resulting from cyclic bleeding: the Holy Grail of the natural history of ectopic endometrium. Hum Reprod 2018; 33 (03) 353-356
  • 46 Li H, Yu Y, Shi Y. et al. HoxA13 stimulates myometrial cells to secrete IL-1β and enhance the expression of contraction-associated proteins. Endocrinology 2016; 157 (05) 2129-2139
  • 47 Mehasseb MK, Panchal R, Taylor AH, Brown L, Bell SC, Habiba M. Estrogen and progesterone receptor isoform distribution through the menstrual cycle in uteri with and without adenomyosis. Fertil Steril 2011; 95 (07) 2228-2235 , 2235.e1
  • 48 Jichan Nie, Xishi Liu, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent. Reprod Sci 2010; 17 (11) 995-1005
  • 49 Scheerer C, Frangini S, Chiantera V, Mechsner S. Reduced sympathetic innervation in endometriosis is associated to Semaphorin 3C and 3F expression. Mol Neurobiol 2017; 54 (07) 5131-5141
  • 50 Wang G, Tokushige N, Fraser IS. Nerve fibers and menstrual cycle in peritoneal endometriosis. Fertil Steril 2011; 95 (08) 2772-2774
  • 51 Al-Jefout M, Dezarnaulds G, Cooper M. et al. Diagnosis of endometriosis by detection of nerve fibres in an endometrial biopsy: a double blind study. Hum Reprod 2009; 24 (12) 3019-3024
  • 52 Browne AS, Yu J, Huang RP, Francisco AM, Sidell N, Taylor RN. Proteomic identification of neurotrophins in the eutopic endometrium of women with endometriosis. Fertil Steril 2012; 98 (03) 713-719
  • 53 Anaf V, Simon P, El Nakadi I. et al. Relationship between endometriotic foci and nerves in rectovaginal endometriotic nodules. Hum Reprod 2000; 15 (08) 1744-1750
  • 54 Mechsner S, Kaiser A, Kopf A, Gericke C, Ebert A, Bartley J. A pilot study to evaluate the clinical relevance of endometriosis-associated nerve fibers in peritoneal endometriotic lesions. Fertil Steril 2009; 92 (06) 1856-1861
  • 55 García-Solares J, Dolmans MM, Squifflet JL, Donnez J, Donnez O. Invasion of human deep nodular endometriotic lesions is associated with collective cell migration and nerve development. Fertil Steril 2018; 110 (07) 1318-1327
  • 56 Tran LV, Tokushige N, Berbic M, Markham R, Fraser IS. Macrophages and nerve fibres in peritoneal endometriosis. Hum Reprod 2009; 24 (04) 835-841
  • 57 Greaves E, Temp J, Esnal-Zufiurre A, Mechsner S, Horne AW, Saunders PT. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol 2015; 185 (08) 2286-2297
  • 58 Zhang X, Lu B, Huang X, Xu H, Zhou C, Lin J. Innervation of endometrium and myometrium in women with painful adenomyosis and uterine fibroids. Fertil Steril 2010; 94 (02) 730-737
  • 59 Vacca P, Vitale C, Montaldo E. et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci U S A 2011; 108 (06) 2402-2407
  • 60 Armstrong GM, Maybin JA, Murray AA. et al. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model. Sci Rep 2017; 7 (01) 17416
  • 61 Russell P, Anderson L, Lieberman D. et al. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure I: Techniques. J Reprod Immunol 2011; 91 (1-2): 90-102
  • 62 Bulmer JN, Jones RK, Searle RF. Intraepithelial leukocytes in endometriosis and adenomyosis: comparison of eutopic and ectopic endometrium with normal endometrium. Hum Reprod 1998; 13 (1O): 2910-2915
  • 63 Orazov MR, Radzinsky VE, Nosenko EN, Khamoshina MB, Dukhin AO, Lebedeva MG. Immune-inflammatory predictors of the pelvic pain syndrome associated with adenomyosis. Gynecol Endocrinol 2017; 33 (Suppl. 01) 44-46
  • 64 He H, Mack JJ, Güç E. et al. Perivascular macrophages limit permeability. Arterioscler Thromb Vasc Biol 2016; 36 (11) 2203-2212
  • 65 Schindl M, Birner P, Obermair A, Kiesel L, Wenzl R. Increased microvessel density in adenomyosis uteri. Fertil Steril 2001; 75 (01) 131-135
  • 66 Liu X, Shen M, Qi Q, Zhang H, Guo SW. Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis. Hum Reprod 2016; 31 (04) 734-749
  • 67 Harmsen MJ, Wong CFC, Mijatovic V. et al. Role of angiogenesis in adenomyosis-associated abnormal uterine bleeding and subfertility: a systematic review. Hum Reprod Update 2019; 25 (05) 647-671
  • 68 Ota H, Igarashi S, Hatazawa J, Tanaka T. Is adenomyosis an immune disease?. Hum Reprod Update 1998; 4 (04) 360-367
  • 69 De Leo B, Esnal-Zufiaurre A, Collins F, Critchley HOD, Saunders PTK. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor. F1000 Res 2017; 6: 667
  • 70 Benagiano G, Brosens I. The endometrium in adenomyosis. Womens Health (Lond) 2012; 8 (03) 301-312
  • 71 Tremellen KP, Russell P. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. II: adenomyosis and macrophages. J Reprod Immunol 2012; 93 (01) 58-63
  • 72 Ota H, Tanaka T. Stromal vascularization in the endometrium during adenomyosis. Microsc Res Tech 2003; 60 (04) 445-449
  • 73 Ota H, Igarashi S, Hatazawa J, Tanaka T. Immunohistochemical assessment of superoxide dismutase expression in the endometrium in endometriosis and adenomyosis. Fertil Steril 1999; 72 (01) 129-134
  • 74 Herndon CN, Aghajanova L, Balayan S. et al. Global transcriptome abnormalities of the eutopic endometrium from women with adenomyosis. Reprod Sci 2016; 23 (10) 1289-1303
  • 75 Acar S, Millar E, Mitkova M, Mitkov V. Value of ultrasound shear wave elastography in the diagnosis of adenomyosis. Ultrasound 2016; 24 (04) 205-213
  • 76 Al-Sabbagh M, Lam EW, Brosens JJ. Mechanisms of endometrial progesterone resistance. Mol Cell Endocrinol 2012; 358 (02) 208-215
  • 77 Hellweg G, Shaka JA. Endometrial granulocytes; tissue culture studies of endometrium and decidua with special attention to the endometrial granulocytes. Obstet Gynecol 1959; 13 (05) 519-529
  • 78 Kawaguchi K, Fujii S, Konishi I, Okamura H, Mori T. Ultrastructural study of cultured smooth muscle cells from uterine leiomyoma and myometrium under the influence of sex steroids. Gynecol Oncol 1985; 21 (01) 32-41
  • 79 Gellersen B, Bonhoff A, Hunt N, Bohnet HG. Decidual-type prolactin expression by the human myometrium. Endocrinology 1991; 129 (01) 158-168
  • 80 Heidari Kani MH, Chan E-C, Young RC, Butler T, Smith R, Paul JW. 3D cell culturing and possibilities for myometrial tissue engineering. Ann Biomed Eng 2017; 45 (07) 1746-1757
  • 81 Arrowsmith S, Keov P, Muttenthaler M, Gruber CW. Contractility measurements of human uterine smooth muscle to aid drug development. J Vis Exp 2018; (131) 56639
  • 82 Gaide Chevronnay HP, Lemoine P, Courtoy PJ, Marbaix E, Henriet P. Ovarian steroids, mitogen-activated protein kinases, and/or aspartic proteinases cooperate to control endometrial remodeling by regulating gene expression in the stroma and glands. Endocrinology 2010; 151 (09) 4515-4526
  • 83 Schäfer WR, Fischer L, Roth K. et al. Critical evaluation of human endometrial explants as an ex vivo model system: a molecular approach. Mol Hum Reprod 2011; 17 (04) 255-265
  • 84 Fasciani A, Bocci G, Xu J. et al. Three-dimensional in vitro culture of endometrial explants mimics the early stages of endometriosis. Fertil Steril 2003; 80 (05) 1137-1143
  • 85 Osteen KG, Hill GA, Hargrove JT, Gorstein F. Development of a method to isolate and culture highly purified populations of stromal and epithelial cells from human endometrial biopsy specimens. Fertil Steril 1989; 52 (06) 965-972
  • 86 Korch C, Spillman MA, Jackson TA. et al. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecol Oncol 2012; 127 (01) 241-248
  • 87 Banu SK, Lee J, Starzinski-Powitz A, Arosh JA. Gene expression profiles and functional characterization of human immortalized endometriotic epithelial and stromal cells. Fertil Steril 2008; 90 (04) 972-987
  • 88 Samalecos A, Reimann K, Wittmann S. et al. Characterization of a novel telomerase-immortalized human endometrial stromal cell line, St-T1b. Reprod Biol Endocrinol 2009; 7: 76
  • 89 Krikun G, Mor G, Alvero A. et al. A novel immortalized human endometrial stromal cell line with normal progestational response. Endocrinology 2004; 145 (05) 2291-2296
  • 90 Wu J, Taylor RN, Sidell N. Retinoic acid regulates gap junction intercellular communication in human endometrial stromal cells through modulation of the phosphorylation status of connexin 43. J Cell Physiol 2013; 228 (04) 903-910
  • 91 Schutte SC, James CO, Sidell N, Taylor RN. Tissue-engineered endometrial model for the study of cell-cell interactions. Reprod Sci 2015; 22 (03) 308-315
  • 92 Valdez J, Cook CD, Ahrens CC. et al. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials 2017; 130: 90-103
  • 93 Arnold JT, Lessey BA, Seppälä M, Kaufman DG. Effect of normal endometrial stroma on growth and differentiation in Ishikawa endometrial adenocarcinoma cells. Cancer Res 2002; 62 (01) 79-88
  • 94 Zeitvogel A, Baumann R, Starzinski-Powitz A. Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am J Pathol 2001; 159 (05) 1839-1852
  • 95 Cook CD, Hill AS, Guo M. et al. Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function. Integr Biol 2017; 9 (04) 271-289
  • 96 Barragan F, Irwin JC, Balayan S. et al. Human endometrial fibroblasts derived from mesenchymal progenitors inherit progesterone resistance and acquire an inflammatory phenotype in the endometrial niche in endometriosis. Biol Reprod 2016; 94 (05) 118
  • 97 von Wolff M, Stieger S, Lumpp K, Bücking J, Strowitzki T, Thaler CJ. Endometrial interleukin-6 in vitro is not regulated directly by female steroid hormones, but by pro-inflammatory cytokines and hypoxia. Mol Hum Reprod 2002; 8 (12) 1096-1102
  • 98 Chen JC, Hoffman JR, Arora R. et al. Cryopreservation and recovery of human endometrial epithelial cells with high viability, purity, and functional fidelity. Fertil Steril 2016; 105 (02) 501-10.e1
  • 99 Turco MY, Gardner L, Hughes J. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol 2017; 19 (05) 568-577
  • 100 Boretto M, Cox B, Noben M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 2017; 144 (10) 1775-1786
  • 101 Sato T, Vries RG, Snippert HJ. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459 (7244): 262-265
  • 102 Valentijn AJ, Saretzki G, Tempest N, Critchley HO, Hapangama DK. Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis. Hum Reprod 2015; 30 (12) 2816-2828
  • 103 Boretto M, Maenhoudt N, Luo X. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 2019; 21 (08) 1041-1051
  • 104 Hapangama DK, Drury J, Da Silva L. et al. Abnormally located SSEA1+/SOX9+ endometrial epithelial cells with a basalis-like phenotype in the eutopic functionalis layer may play a role in the pathogenesis of endometriosis. Hum Reprod 2019; 34 (01) 56-68
  • 105 Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009; 80 (06) 1136-1145
  • 106 Tempest N, Maclean A, Hapangama DK. Endometrial stem cell markers: current concepts and unresolved questions. Int J Mol Sci 2018; 19 (10) E3240
  • 107 Tempest N, Baker AM, Wright NA, Hapangama DK. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche?. Hum Reprod 2018; 33 (06) 1052-1062
  • 108 Valentijn AJ, Palial K, Al-Lamee H. et al. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod 2013; 28 (10) 2695-2708
  • 109 Miyazaki K, Dyson MT, Coon V JS. et al. Generation of progesterone-responsive endometrial stromal fibroblasts from human induced pluripotent stem cells: role of the WNT/CTNNB1 pathway. Stem Cell Reports 2018; 11 (05) 1136-1155
  • 110 Zhang Y, Zhou L, Li TC, Duan H, Yu P, Wang HY. Ultrastructural features of endometrial-myometrial interface and its alteration in adenomyosis. Int J Clin Exp Pathol 2014; 7 (04) 1469-1477
  • 111 Hutchinson JL, Rajagopal SP, Yuan M, Norman JE. Lipopolysaccharide promotes contraction of uterine myocytes via activation of Rho/ROCK signaling pathways. FASEB J 2014; 28 (01) 94-105
  • 112 Souza GR, Tseng H, Gage JA. et al. Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility. Int J Mol Sci 2017; 18 (04) E683
  • 113 Vaes RDW, van den Berk L, Boonen B, van Dijk DPJ, Olde Damink SWM, Rensen SS. A novel human cell culture model to study visceral smooth muscle phenotypic modulation in health and disease. Am J Physiol Cell Physiol 2018; 315 (04) C598-C607
  • 114 Osada H. Uterine adenomyosis and adenomyoma: the surgical approach. Fertil Steril 2018; 109 (03) 406-417
  • 115 Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006; 7 (03) 211-224
  • 116 Bentin-Ley U, Pedersen B, Lindenberg S, Larsen JF, Hamberger L, Horn T. Isolation and culture of human endometrial cells in a three-dimensional culture system. J Reprod Fertil 1994; 101 (02) 327-332
  • 117 Kelly RW, King AE, Critchley HO. Cytokine control in human endometrium. Reproduction 2001; 121 (01) 3-19
  • 118 Schutte SC, Taylor RN. A tissue-engineered human endometrial stroma that responds to cues for secretory differentiation, decidualization, and menstruation. Fertil Steril 2012; 97 (04) 997-1003
  • 119 Arnold JT, Kaufman DG, Seppälä M, Lessey BA. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum Reprod 2001; 16 (05) 836-845
  • 120 Abbas Y, Brunel LG, Hollinshead MS. et al. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus 2020; 10 (02) 20190079
  • 121 Hernandez-Gordillo V, Kassis T, Lampejo A. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 2020; 254: 120125
  • 122 Wolf K, Alexander S, Schacht V. et al. Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 2009; 20 (08) 931-941
  • 123 Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 2003; 4 (03) 713-722
  • 124 Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods 2016; 13 (05) 405-414
  • 125 Brown A, He H, Trumper E, Valdez J, Hammond P, Griffith LG. Engineering PEG-based hydrogels to foster efficient endothelial network formation in free-swelling and confined microenvironments. Biomaterials 2020; 243: 119921
  • 126 Kyburz KA, Anseth KS. Synthetic mimics of the extracellular matrix: how simple is complex enough?. Ann Biomed Eng 2015; 43 (03) 489-500
  • 127 DiMarco RL, Dewi RE, Bernal G, Kuo C, Heilshorn SC. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater Sci 2015; 3 (10) 1376-1385
  • 128 Stegemann JP, Hong H, Nerem RM. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol (1985) 2005; 98 (06) 2321-2327
  • 129 Dallot E, Pouchelet M, Gouhier N, Cabrol D, Ferré F, Breuiller-Fouché M. Contraction of cultured human uterine smooth muscle cells after stimulation with endothelin-1. Biol Reprod 2003; 68 (03) 937-942
  • 130 Rajagopal SP, Hutchinson JL, Dorward DA, Rossi AG, Norman JE. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone. Mol Hum Reprod 2015; 21 (08) 672-686
  • 131 Devost D, Zingg HH. Novel in vitro system for functional assessment of oxytocin action. Am J Physiol Endocrinol Metab 2007; 292 (01) E1-E6
  • 132 Wendremaire M, Hadi T, Pezze M. et al. Macrophage-induced reactive oxygen species promote myometrial contraction and labor-associated mechanisms. Biol Reprod 2020; 102 (06) 1326-1339
  • 133 Peyton SR, Raub CB, Keschrumrus VP, Putnam AJ. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 2006; 27 (28) 4881-4893
  • 134 Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996; 84 (03) 359-369
  • 135 Beunk L, Brown K, Nagtegaal I, Friedl P, Wolf K. Cancer invasion into musculature: mechanics, molecules and implications. Semin Cell Dev Biol 2019; 93: 36-45
  • 136 Weimar CH, Macklon NS, Post Uiterweer ED, Brosens JJ, Gellersen B. The motile and invasive capacity of human endometrial stromal cells: implications for normal and impaired reproductive function. Hum Reprod Update 2013; 19 (05) 542-557
  • 137 Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 2000; 113 (Pt 10): 1677-1686
  • 138 Zaman MH, Trapani LM, Sieminski AL. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 2006; 103 (29) 10889-10894
  • 139 Tan CW, Lee YH, Tan HH. et al. CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis. Fertil Steril 2014; 102 (01) 167-177.e9
  • 140 Yang J-H, Wu MY, Chen MJ, Chen SU, Yang YS, Ho HN. Increased matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 secretion but unaffected invasiveness of endometrial stromal cells in adenomyosis. Fertil Steril 2009; 91 (05) 2193-2198
  • 141 Mehasseb MK, Taylor AH, Pringle JH, Bell SC, Habiba M. Enhanced invasion of stromal cells from adenomyosis in a three-dimensional coculture model is augmented by the presence of myocytes from affected uteri. Fertil Steril 2010; 94 (07) 2547-2551
  • 142 Taylor AH, Kalathy V, Habiba M. Estradiol and tamoxifen enhance invasion of endometrial stromal cells in a three-dimensional coculture model of adenomyosis. Fertil Steril 2014; 101 (01) 288-293
  • 143 Palmer SS, Altan M, Denis D. et al. Bentamapimod (JNK inhibitor AS602801) induces regression of endometriotic lesions in animal models. Reprod Sci 2016; 23 (01) 11-23
  • 144 Hussein M, Chai DC, Kyama CM. et al. c-Jun NH2-terminal kinase inhibitor bentamapimod reduces induced endometriosis in baboons: an assessor-blind placebo-controlled randomized study. Fertil Steril 2016; 105 (03) 815-824.e5
  • 145 Gnecco JS, Ding T, Smith C, Lu J, Bruner-Tran KL, Osteen KG. Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium. Hum Reprod 2019; 34 (04) 702-714
  • 146 Goddard LM, Murphy TJ, Org T. et al. Progesterone receptor in the vascular endothelium triggers physiological uterine permeability preimplantation. Cell 2014; 156 (03) 549-562
  • 147 Maggioli E, McArthur S, Mauro C. et al. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 2016; 51: 212-222
  • 148 Pence JC, Clancy KBH, Harley BAC. Proangiogenic activity of endometrial epithelial and stromal cells in response to estradiol in gelatin hydrogels. Adv Biosyst 2017; 1 (09) 1700056
  • 149 Gnecco JS, Pensabene V, Li DJ. et al. Compartmentalized culture of perivascular stroma and endothelial cells in a microfluidic model of the human endometrium. Ann Biomed Eng 2017; 45 (07) 1758-1769
  • 150 Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 2012; 109 (34) 13515-13520
  • 151 Hsu YH, Moya ML, Hughes CC, George SC, Lee AP. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 2013; 13 (15) 2990-2998
  • 152 Chen MB, Whisler JA, Fröse J, Yu C, Shin Y, Kamm RD. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 2017; 12 (05) 865-880
  • 153 Chen MB, Hajal C, Benjamin DC. et al. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc Natl Acad Sci U S A 2018; 115 (27) 7022-7027
  • 154 Rambøl MH, Han E, Niklason LE. Microvessel network formation and interactions with pancreatic islets in three-dimensional chip cultures. Tissue Eng Part A 2020; 26 (9-10): 556-568
  • 155 Aref AR, Campisi M, Ivanova E. et al. 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab Chip 2018; 18 (20) 3129-3143
  • 156 Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018; 180: 117-129
  • 157 Sobrino A, Phan DT, Datta R. et al. 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 2016; 6: 31589
  • 158 Bersini S, Gilardi M, Ugolini GS. et al. Engineering an environment for the study of fibrosis: a 3D human muscle model with endothelium specificity and endomysium. Cell Rep 2018; 25 (13) 3858-3868.e4
  • 159 Regehr KJ, Domenech M, Koepsel JT. et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009; 9 (15) 2132-2139
  • 160 Ivanova E, Kuraguchi M, Xu M. et al. Use of ex vivo patient-derived tumor organotypic spheroids to identify combination therapies for HER2 mutant non-small cell lung cancer. Clin Cancer Res 2020; 26 (10) 2393-2403
  • 161 Gilbert PM, Weaver VM. Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease. Semin Cell Dev Biol 2017; 67: 141-152
  • 162 Purdy MP, Ducharme M, Haak AJ. et al. YAP/TAZ are activated by mechanical and hormonal stimuli in myometrium and exhibit increased baseline activation in uterine fibroids. Reprod Sci 2020; 27 (04) 1074-1085
  • 163 Kim J, Ushida T, Montagne K. et al. Acquired contractile ability in human endometrial stromal cells by passive loading of cyclic tensile stretch. Sci Rep 2020; 10 (01) 9014
  • 164 Copley Salem C, Ulrich C, Quilici D, Schlauch K, Buxton ILO, Burkin H. Mechanical strain induced phospho-proteomic signaling in uterine smooth muscle cells. J Biomech 2018; 73: 99-107
  • 165 Elad D, Zaretsky U, Kuperman T. et al. Tissue engineered endometrial barrier exposed to peristaltic flow shear stresses. APL Bioeng 2020; 4 (02) 026107
  • 166 Huang AH, Niklason LE. Engineering biological-based vascular grafts using a pulsatile bioreactor. J Vis Exp 2011; (52) 2646
  • 167 Wainger BJ, Buttermore ED, Oliveira JT. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 2015; 18 (01) 17-24
  • 168 Lemke KA, Aghayee A, Ashton RS. Deriving, regenerating, and engineering CNS tissues using human pluripotent stem cells. Curr Opin Biotechnol 2017; 47: 36-42
  • 169 Puzan M, Hosic S, Ghio C, Koppes A. Enteric nervous system regulation of intestinal stem cell differentiation and epithelial monolayer function. Sci Rep 2018; 8 (01) 6313
  • 170 Osaki T, Sivathanu V, Kamm RD. Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis. Biomaterials 2018; 156: 65-76
  • 171 Oleaga C, Bernabini C, Smith AS. et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 2016; 6: 20030
  • 172 Edington CD, Chen WLK, Geishecker E. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 2018; 8 (01) 4530
  • 173 Trapecar M, Communal C, Velazquez J. et al. Gut-liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids. Cell Syst 2020; 10 (03) 223-239.e9
  • 174 Critchley HOD, Babayev E, Bulun SE. et al. Menstruation: science and society. Am J Obstet Gynecol 2020; (epub ahead of print). DOI: 10.1016/j.ajog.2020.06.004.
  • 175 Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update 2014; 20 (05) 702-716
  • 176 Aghajanova L, Giudice LC. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod Sci 2011; 18 (03) 229-251
  • 177 Huang W, Navarro-Serer B, Jeong YJ. et al. Pattern of invasion in human pancreatic cancer organoids is associated with loss of SMAD4 and clinical outcome. Cancer Res 2020; 80 (13) 2804-2817