Semin Thromb Hemost 2022; 48(02): 161-173
DOI: 10.1055/s-0041-1730358
Review Article

Dysfibrinogenemia—Potential Impact of Genotype on Thrombosis or Bleeding

Mustafa Vakur Bor
1   Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
Søren Feddersen
2   Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
Inge Søkilde Pedersen
3   Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
Johannes Jakobsen Sidelmann
1   Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
4   Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
Søren Risom Kristensen
5   Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
› Author Affiliations


The congenital dysfibrinogenemias, most often associated with bleeding disorders, encompass mutations in the amino-terminal end of fibrinogen α-chain consisting of Gly17-Pro18-Arg19-Val20, known as knob A, which is a critical site for fibrin polymerization. Here we review the studies reporting dysfibrinogenemia due to mutations affecting fibrinogen knob A and identified 29 papers. The number of reports on dysfibrinogenemias related to residues Gly17, Pro18, Arg19, and Val20 is 5, 4, 18, and 2, respectively. Dysfibrinogenemias related to residues Gly17, Pro18, and Val20 are exclusively associated with bleeding tendency. However, the clinical picture associated with dysfibrinogenemia related to residue Arg19 varies, with most patients suffering from bleeding tendencies, but also transitory ischemic attacks and retinal thrombosis may occur. The reason for this variation is unclear. To elaborate the genotype–phenotype associations further, we studied a Danish family with knob A-related dysfibrinogenemia caused by the Aα Arg19Gly (p.Arg19Gly) mutation using whole-exome sequencing and fibrin structure analysis. Our family is the first reported carrying the p.Arg19Gly mutation combined with one or more single nucleotide polymorphisms (SNP)s in FGA, FGB, and/or FGG and increased fibrin fiber thickness and fibrin mass-to-length ratio suffering from pulmonary emboli, suggesting that compound genotypes may contribute to the thrombogenic phenotype of these patients. Our review, accordingly, focuses on significance of SNPs, compound genotypes, and fibrin structure measures affecting the genotype–phenotype associations in fibrinogen knob A mutations.

Publication History

Article published online:
14 July 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

  • References

  • 1 Asselta R, Duga S, Tenchini ML. The molecular basis of quantitative fibrinogen disorders. J Thromb Haemost 2006; 4 (10) 2115-2129
  • 2 Pratt KP, Côté HC, Chung DW, Stenkamp RE, Davie EW. The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Proc Natl Acad Sci U S A 1997; 94 (14) 7176-7181
  • 3 Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997; 389 (6650): 455-462
  • 4 Greenberg CS, Miraglia CC, Rickles FR, Shuman MA. Cleavage of blood coagulation factor XIII and fibrinogen by thrombin during in vitro clotting. J Clin Invest 1985; 75 (05) 1463-1470
  • 5 Cunningham MT, Brandt JT, Laposata M, Olson JD. Laboratory diagnosis of dysfibrinogenemia. Arch Pathol Lab Med 2002; 126 (04) 499-505
  • 6 Paraboschi EM, Duga S, Asselta R. Fibrinogen as a pleiotropic protein causing human diseases: the mutational burden of Aα, Bβ, and γ chains. Int J Mol Sci 2017; 18 (12) E2711
  • 7 GFHT. Human fibrinogen database. . Accessed May4, 2021 at:
  • 8 Asselta R, Platè M, Robusto M. et al. Clinical and molecular characterisation of 21 patients affected by quantitative fibrinogen deficiency. Thromb Haemost 2015; 113 (03) 567-576
  • 9 Undas A, Casini A. Congenital structural and functional fibrinogen disorders: a primer for internists. Pol Arch Intern Med 2019; 129 (12) 913-920
  • 10 Tiscia GL, Margaglione M. Human fibrinogen: molecular and genetic aspects of congenital disorders. Int J Mol Sci 2018; 19 (06) E1597
  • 11 Casini A, Brungs T, Lavenu-Bombled C, Vilar R, Neerman-Arbez M, de Moerloose P. Genetics, diagnosis and clinical features of congenital hypodysfibrinogenemia: a systematic literature review and report of a novel mutation. J Thromb Haemost 2017; 15 (05) 876-888
  • 12 Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13 (06) 909-919
  • 13 Casini A, Blondon M, Lebreton A. et al. Natural history of patients with congenital dysfibrinogenemia. Blood 2015; 125 (03) 553-561
  • 14 de Moerloose P, Neerman-Arbez M. Congenital fibrinogen disorders. Semin Thromb Hemost 2009; 35 (04) 356-366
  • 15 Blombäck M, Blombäck B, Mammen EF, Prasad AS. Fibrinogen Detroit--a molecular defect in the N-terminal disulphide knot of human fibrinogen?. Nature 1968; 218 (5137): 134-137
  • 16 Imperato C, Dettori AG. Congenital hypofibrinogenemia with fibrinoasthenia [in Italian]. Helv Paediatr Acta 1958; 13 (04) 380-399
  • 17 Laudano AP, Doolittle RF. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci U S A 1978; 75 (07) 3085-3089
  • 18 Tanaka H, Terasawa F, Ito T. et al. Fibrinogen Matsumoto V: a variant with Aalpha19 Arg-->Gly (AGG-->GGG). Comparison between fibrin polymerization stimulated by thrombin or reptilase and fibrin monomer polymerization. Thromb Haemost 2001; 85 (01) 108-113
  • 19 Asselta R, Robusto M, Platé M, Santoro C, Peyvandi F, Duga S. Molecular characterization of 7 patients affected by dys- or hypo-dysfibrinogenemia: identification of a novel mutation in the fibrinogen Bbeta chain causing a gain of glycosylation. Thromb Res 2015; 136 (01) 168-174
  • 20 Bolliger-Stucki B, Bucciarelli P, Lämmle B, Furlan M. Fibrinogen Milano XIII (Aalpha 19 Arg-->Gly): a dysfunctional variant with an amino acid substitution in the N-terminal polymerization site. Thromb Res 1999; 96 (05) 399-405
  • 21 Brennan SO, Ridgway H, Stormorken H, Brosstad F, George PM. Characterisation of Fibrinogen Oslo IV by electrospray mass spectrometry. Thromb Haemost 1997; 77 (05) 1040-1041
  • 22 Cai R, Li Y, Wang W. et al. A novel fibrinogen variant in a Chinese pedigree with congenital dysfibrinogenemia caused by FGA P. Arg38Thr mutation: a case report. Medicine (Baltimore) 2018; 97 (40) e12697
  • 23 Cao Z, Dong Y, Zeng J. et al. Whole-exome sequencing identified novel mutations in FGA and FGG genes in the patients with decreased fibrinogen. Thromb Res 2019; 177: 79-82
  • 24 Casini A, Duval C, Pan X, Tintillier V, Biron-Andreani C, Ariëns RAS. Fibrin clot structure in patients with congenital dysfibrinogenaemia. Thromb Res 2016; 137: 189-195
  • 25 Castaman G, Giacomelli SH, Biasoli C, Contino L, Radossi P. Risk of bleeding and thrombosis in inherited qualitative fibrinogen disorders. Eur J Haematol 2019; 103 (04) 379-384
  • 26 Matsuda M, Iwanaga A, Takada A, Henschen M. (eds). Fibrinogen Mannheim I – Identification of an Aα19 Arg→Gly Substitution in Dysfibrinogenaemia Associated with Bleeding Tendency. Amsterdam: Elsevier Science Publishers BV; 1990
  • 27 Hessel B, Adamson L, Procyk R, Therkildsen L, Stenbjerg S, Blombäck B. Fibrinogen Aarhus and factor XIII induced polymerization and gel formation. Br J Haematol 1987; 66 (03) 355-361
  • 28 Hessel B, Stenbjerg S, Dyr J, Kudryk B, Therkildsen L, Blombäck B. Fibrinogen Aarhus--a new case of dysfibrinogenemia. Thromb Res 1986; 42 (01) 21-37
  • 29 Stormorken H, Brosstad F, Seim H. A new dysfibrinogenemia: fibrinogen Oslo IV. Thromb Haemost 1983; 49 (02) 120-122
  • 30 Tavasoli B, Safa M, Dorgalaleh A. et al. Molecular and clinical profile of congenital fibrinogen disorders in Iran, identification of two novel mutations. Int J Lab Hematol 2020; 42 (05) 619-627
  • 31 Wang Y, Chen W, Ma P, Zhu L, Wang M. Clinical and molecular characterization of nine Chinese patients affected by hypofibrinogenemia or dysfibrinogenemia. Blood Coagul Fibrinolysis 2018; 29 (04) 404-409
  • 32 Yamaguchi S, Sugo T, Hashimoto Y. et al. Fibrinogen Kumamoto with an Aα Arg-19 to Gly substitution has reduced affinity for thrombin: possible relevance to thrombosis. Jap J Thromb Haemost 1997; 77: 10
  • 33 Kudryk B, Blombäck B, Blombäck M. Fibrinogen Detroit - an abnormal fibrinogen with non-functinal NH2-terminal polymerization domain. Thromb Res 1976; 9 (01) 25-36
  • 34 Henschen A, Graeff H, Lottspeich F. (eds). The search for molecular defects in abnormal fibrinogens. In: Fibrinogen, Recent Biochemical and Medical Aspects. Berlin: Walter de Gruyter; 1982
  • 35 Szanto T, Lassila R, Lemponen M, Lehtinen E, Neerman-Arbez M, Casini A. Whole blood thromboelastometry by ROTEM and thrombin generation by genesia according to the genotype and clinical phenotype in congenital fibrinogen disorders. Int J Mol Sci 2021; 22 (05) 2286
  • 36 Zhou J, Ding Q, Chen Y. et al. Clinical features and molecular basis of 102 Chinese patients with congenital dysfibrinogenemia. Blood Cells Mol Dis 2015; 55 (04) 308-315
  • 37 Casini A, Undas A, Palla R, Thachil J, de Moerloose P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (09) 1887-1890
  • 38 Neerman-Arbez M, de Moerloose P, Casini A. Laboratory and genetic investigation of mutations accounting for congenital fibrinogen disorders. Semin Thromb Hemost 2016; 42 (04) 356-365
  • 39 Snir A, Brenner B, Paz B, Ohel G, Lanir N. The role of fibrin matrices and tissue factor in early-term trophoblast proliferation and spreading. Thromb Res 2013; 132 (04) 477-483
  • 40 Hattori Y, Tamura S, Suzuki N. et al. Genetic abnormalities of Japanese patient with symptomatic- and asymptomatic-dysfibrinogenemia PB0654. Abstracts of the XXVII Congress of the International Society on Thrombosis and Haemostasis, July 6–10 2019. Res Pract Thromb Haemost 2019; 3: 221
  • 41 Shapiro SE, Phillips E, Manning RA. et al. Clinical phenotype, laboratory features and genotype of 35 patients with heritable dysfibrinogenaemia. Br J Haematol 2013; 160 (02) 220-227
  • 42 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost 1995; 73 (01) 151-161
  • 43 Casini A, De Maistre E, Casini-Stuppi V, Fontana P, Neerman-Arbez M, de Moerloose P. Fibrinogen geneva II: a new congenitally abnormal fibrinogen alpha chain (Gly17Asp) with a review of similar mutations resulting in abnormal knob A. Blood Coagul Fibrinolysis 2014; 25 (03) 280-282
  • 44 Brennan SO, Laurie AD, Mo A, Grigg A. Novel fibrinogen mutations (Aα17Gly→Cys and Aα381Ser→Phe) occurring with a 312Thr→Ala polymorphism: allelic phase assigned by direct mass measurement. Blood Coagul Fibrinolysis 2015; 26 (08) 882-886
  • 45 Wada Y, Niwa K, Maekawa H. et al. A new type of congenital dysfibrinogen, fibrinogen Bremen, with an A alpha Gly-17 to Val substitution associated with hemorrhagic diathesis and delayed wound healing. Thromb Haemost 1993; 70 (03) 397-403
  • 46 Uotani C, Miyata T, Kumabashiri I. et al. Fibrinogen Kanazawa: a congenital dysfibrinogenaemia with delayed polymerization having a replacement of proline-18 by leucine in the A alpha-chain. Blood Coagul Fibrinolysis 1991; 2 (03) 413-417
  • 47 Ouyang Q, Ding QL, Huang DD. et al. Analysis of phenotype and genotype in three Chinese pedigrees with inherited dysfibrinogenemia [in Chinese]. Zhonghua Xue Ye Xue Za Zhi 2011; 32 (03) 153-157
  • 48 Yoshida N, Okuma M, Hirata H, Matsuda M, Yamazumi K, Asakura S. Fibrinogen Kyoto II, a new congenitally abnormal molecule, characterized by the replacement of A alpha proline-18 by leucine. Blood 1991; 78 (01) 149-153
  • 49 Brennan SO, Hammonds B, George PM. Aberrant hepatic processing causes removal of activation peptide and primary polymerisation site from fibrinogen Canterbury (A alpha 20 Val --> Asp). J Clin Invest 1995; 96 (06) 2854-2858
  • 50 Wang X, Tang N, Shen N, Lu Y, Li D. Congenital fibrinogen disorder caused by digenic mutations of the FGA and FGB genes. Hematology 2020; 25 (01) 145-148
  • 51 Zhou J, Zhu P, Zhang X. A Chinese family with congenital dysfibrinogenemia carries a heterozygous missense mutation in FGA: Concerning the genetic abnormality and clinical treatment. Pak J Med Sci 2017; 33 (04) 968-972
  • 52 Cronjé HT, Nienaber-Rousseau C, Zandberg L, de Lange Z, Green FR, Pieters M. Fibrinogen and clot-related phenotypes determined by fibrinogen polymorphisms: independent and IL-6-interactive associations. PLoS One 2017; 12 (11) e0187712
  • 53 Danik JS, Paré G, Chasman DI. et al. Novel loci, including those related to Crohn disease, psoriasis, and inflammation, identified in a genome-wide association study of fibrinogen in 17 686 women: the Women's Genome Health Study. Circ Cardiovasc Genet 2009; 2 (02) 134-141
  • 54 Jacquemin B, Antoniades C, Nyberg F. et al. Common genetic polymorphisms and haplotypes of fibrinogen alpha, beta, and gamma chains affect fibrinogen levels and the response to proinflammatory stimulation in myocardial infarction survivors: the AIRGENE study. J Am Coll Cardiol 2008; 52 (11) 941-952
  • 55 Jeff JM, Brown-Gentry K, Crawford DC. Identification of gene-gene and gene-environment interactions within the fibrinogen gene cluster for fibrinogen levels in three ethnically diverse populations. Pac Symp Biocomput 2015; 219-230
  • 56 Ken-Dror G, Humphries SE, Kumari M, Kivimaki M, Drenos F. A genetic instrument for Mendelian randomization of fibrinogen. Eur J Epidemiol 2012; 27 (04) 267-279
  • 57 Kolz M, Baumert J, Gohlke H. et al. Association study between variants in the fibrinogen gene cluster, fibrinogen levels and hypertension: results from the MONICA/KORA study. Thromb Haemost 2009; 101 (02) 317-324
  • 58 Kotzé RC, Nienaber-Rousseau C, De Lange Z, De Maat MP, Hoekstra T, Pieters M. Genetic polymorphisms influencing total and γ′ fibrinogen levels and fibrin clot properties in Africans. Br J Haematol 2015; 168 (01) 102-112
  • 59 Reiner AP, Carty CL, Carlson CS. et al. Association between patterns of nucleotide variation across the three fibrinogen genes and plasma fibrinogen levels: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Thromb Haemost 2006; 4 (06) 1279-1287
  • 60 Reiner AP, Lange LA, Smith NL, Zakai NA, Cushman M, Folsom AR. Common hemostasis and inflammation gene variants and venous thrombosis in older adults from the Cardiovascular Health Study. J Thromb Haemost 2009; 7 (09) 1499-1505
  • 61 Theodoraki EV, Nikopensius T, Suhorutsenko J. et al. Fibrinogen beta variants confer protection against coronary artery disease in a Greek case-control study. BMC Med Genet 2010; 11: 28
  • 62 Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ, Rosendaal FR, Vos HL, Bertina RM. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma' levels. Blood 2005; 106 (13) 4176-4183
  • 63 Wu FY, Li CI, Liao LN. et al. Evaluation of single nucleotide polymorphisms in 6 candidate genes and carotid intima-media thickness in community-dwelling residents. PLoS One 2020; 15 (03) e0230715
  • 64 Arellano AR, Bezemer ID, Tong CH. et al. Gene variants associated with venous thrombosis: confirmation in the MEGA study. J Thromb Haemost 2010; 8 (05) 1132-1134
  • 65 Carter AM, Catto AJ, Kohler HP, Ariëns RA, Stickland MH, Grant PJ. alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood 2000; 96 (03) 1177-1179
  • 66 Gohil R, Peck G, Sharma P. The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb Haemost 2009; 102 (02) 360-370
  • 67 Le Gal G, Delahousse B, Lacut K. et al; Groupe d'Etudes sur la Thrombose des Hôpitaux Universitaires du Grand Ouest. Fibrinogen Aalpha-Thr312Ala and factor XIII-A Val34Leu polymorphisms in idiopathic venous thromboembolism. Thromb Res 2007; 121 (03) 333-338
  • 68 Lotta LA, Wang M, Yu J. et al. Identification of genetic risk variants for deep vein thrombosis by multiplexed next-generation sequencing of 186 hemostatic/pro-inflammatory genes. BMC Med Genomics 2012; 5: 7
  • 69 Rasmussen-Torvik LJ, Cushman M, Tsai MY. et al. The association of alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism in the LITE study. Thromb Res 2007; 121 (01) 1-7
  • 70 Smith NL, Wiggins KL, Reiner AP. et al. Replication of findings on the association of genetic variation in 24 hemostasis genes and risk of incident venous thrombosis. J Thromb Haemost 2009; 7 (10) 1743-1746
  • 71 Standeven KF, Grant PJ, Carter AM, Scheiner T, Weisel JW, Ariëns RA. Functional analysis of the fibrinogen Aalpha Thr312Ala polymorphism: effects on fibrin structure and function. Circulation 2003; 107 (18) 2326-2330
  • 72 Attanasio C, David A, Neerman-Arbez M. Outcome of donor splice site mutations accounting for congenital afibrinogenemia reflects order of intron removal in the fibrinogen alpha gene (FGA). Blood 2003; 101 (05) 1851-1856
  • 73 Jiang J, Liu K, Zou J. et al. Associations between polymorphisms in coagulation-related genes and venous thromboembolism: a meta-analysis with trial sequential analysis. Medicine (Baltimore) 2017; 96 (13) e6537
  • 74 Jayo A, Arnold E, González-Manchón C, Green D, Lord ST. Hypodysfibrinogenemia causing mild bleeding and thrombotic complications in a compound heterozygote of AalphaIVS4+1G>T mutation and Aalpha4841delC truncation (Aalpha(Perth)). Thromb Haemost 2009; 101 (04) 770-772
  • 75 Lisman T. Decreased plasma fibrinolytic potential as a risk for venous and arterial thrombosis. Semin Thromb Hemost 2017; 43 (02) 178-184
  • 76 Undas A, Ariëns RA. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011; 31 (12) e88-e99
  • 77 Ramanathan R, Gram J, Feddersen S, Nybo M, Larsen A, Sidelmann JJ. Dusart syndrome in a Scandinavian family characterized by arterial and venous thrombosis at young age. Scand J Clin Lab Invest 2013; 73 (07) 585-590
  • 78 Pieters M, Philippou H, Undas A, de Lange Z, Rijken DC, Mutch NJ. Subcommittee on Factor XIII and Fibrinogen, and the Subcommittee on Fibrinolysis. An international study on the feasibility of a standardized combined plasma clot turbidity and lysis assay: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (05) 1007-1012
  • 79 Wada Y, Lord ST. A correlation between thrombotic disease and a specific fibrinogen abnormality (A alpha 554 Arg-->Cys) in two unrelated kindred, Dusart and Chapel Hill III. Blood 1994; 84 (11) 3709-3714
  • 80 Nowak-Göttl U, Weiler H, Hernandez I. et al. Fibrinogen alpha and gamma genes and factor VLeiden in children with thromboembolism: results from 2 family-based association studies. Blood 2009; 114 (09) 1947-1953
  • 81 van Langevelde K, Srámek A, Vincken PW, van Rooden JK, Rosendaal FR, Cannegieter SC. Finding the origin of pulmonary emboli with a total-body magnetic resonance direct thrombus imaging technique. Haematologica 2013; 98 (02) 309-315
  • 82 Sugo T, Endo H, Matsuda M. et al. A classification of the fibrin network structures formed from the hereditary dysfibrinogens. J Thromb Haemost 2006; 4 (08) 1738-1746
  • 83 Pieters M, Guthold M, Nunes CM, de Lange Z. Interpretation and validation of maximum absorbance data obtained from turbidimetry analysis of plasma clots. Thromb Haemost 2020; 120 (01) 44-54
  • 84 Neerman-Arbez M, Casini A. Clinical consequences and molecular bases of low fibrinogen levels. Int J Mol Sci 2018; 19 (01) E192
  • 85 Koopman J, Haverkate F, Grimbergen J. et al. Molecular basis for fibrinogen Dusart (A alpha 554 Arg-->Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest 1993; 91 (04) 1637-1643
  • 86 Tarumi T, Martincic D, Thomas A. et al. Familial thrombophilia associated with fibrinogen paris V: Dusart syndrome. Blood 2000; 96 (03) 1191-1193
  • 87 Sjøland JA, Sidelmann JJ, Brabrand M. et al. Fibrin clot structure in patients with end-stage renal disease. Thromb Haemost 2007; 98 (02) 339-345
  • 88 Carr Jr ME, Hermans J. Size and density of fibrin fibers from turbidity. Macromolecules 1978; 11 (01) 46-50