CC BY 4.0 · Semin Respir Crit Care Med 2021; 42(04): 549-555
DOI: 10.1055/s-0041-1730894
Review Article

Clinical and Radiological Phenotypes and Endotypes

Ricardo J. José
1   Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
2   Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
,
Michael R. Loebinger
1   Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
3   National Heart and Lung Institute, Imperial College, London, United Kingdom
› Author Affiliations

Abstract

Bronchiectasis is a heterogenous disease with multiple etiologies and associated comorbidities. As bronchiectasis is a complex disease, it is unsound to think of it as a single disease particularly when the differing etiologies are likely to be driving bronchiectasis through initial divergent molecular pathways, known as endotypes, that phenotypically present as the same disease due to protracted airway inflammation, but revealing potential differing underlying mechanisms that may have disparity of drug responses. Improved understanding of the cellular immune, inflammatory, and microbiological milieu associated with clinical and radiological features of bronchiectasis has resulted in the recognition of important endotypes and phenotypes that will allow for personalized treatments to improve quality of life and outcomes of patients with bronchiectasis. Here we discuss clinical and radiological phenotypes, as well as emerging molecular endotypes that are possible treatable traits in bronchiectasis.



Publication History

Article published online:
14 July 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 José RJ, Brown JS. Bronchiectasis. Br J Hosp Med 2014; 75 (Suppl. 10) C146-C151
  • 2 Sibila O, Laserna E, Shoemark A. et al. Heterogeneity of treatment response in bronchiectasis clinical trials. In: Respiratory Infections. European Respiratory Society; 2020: 3332
  • 3 Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018; 392 (10150): 880-890
  • 4 Goussault H, Salvator H, Catherinot E. et al. Primary immunodeficiency-related bronchiectasis in adults: comparison with bronchiectasis of other etiologies in a French reference center. Respir Res 2019; 20 (01) 275
  • 5 José RJ, Hall J, Brown JS. De novo bronchiectasis in haematological malignancies: patient characteristics, risk factors and survival. ERJ Open Res 2019; 5 (04) 00166-02019
  • 6 Stubbs A, Bangs C, Shillitoe B. et al. Bronchiectasis and deteriorating lung function in agammaglobulinaemia despite immunoglobulin replacement therapy. Clin Exp Immunol 2018; 191 (02) 212-219
  • 7 Boaventura R, Sibila O, Agusti A, Chalmers JD. Treatable traits in bronchiectasis. Eur Respir J 2018; 52 (03) 1801269
  • 8 McShane PJ, Naureckas ET, Strek ME. Bronchiectasis in a diverse US population: effects of ethnicity on etiology and sputum culture. Chest 2012; 142 (01) 159-167
  • 9 Pasteur MC, Helliwell SM, Houghton SJ. et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med 2000; 162 (4, Pt 1): 1277-1284
  • 10 Anwar GA, McDonnell MJ, Worthy SA. et al. Phenotyping adults with non-cystic fibrosis bronchiectasis: a prospective observational cohort study. Respir Med 2013; 107 (07) 1001-1007
  • 11 Chang-Macchiu P, Traversi L, Polverino E. Bronchiectasis phenotypes. Curr Opin Pulm Med 2019; 25 (03) 281-288
  • 12 Lonni S, Chalmers JD, Goeminne PC. et al. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann Am Thorac Soc 2015; 12 (12) 1764-1770
  • 13 Gatheral T, Kumar N, Sansom B. et al. COPD-related bronchiectasis: independent impact on disease course and outcomes. COPD 2014; 11 (06) 605-614
  • 14 Du Q, Jin J, Liu X, Sun Y. Bronchiectasis as a comorbidity of chronic obstructive pulmonary disease: a systematic review and meta-analysis. PLoS One 2016; 11 (03) e0150532
  • 15 Diaz AA, Young TP, Maselli DJ. et al. Quantitative CT measures of bronchiectasis in smokers. Chest 2017; 151 (06) 1255-1262
  • 16 Luján M, Gallardo X, Amengual MJ, Bosque M, Mirapeix RM, Domingo C. Prevalence of bronchiectasis in asthma according to oral steroid requirement: influence of immunoglobulin levels. BioMed Res Int 2013; 2013: 109219
  • 17 Cukier A, Stelmach R, Kavakama JI, Terra Filho M, Vargas F. Persistent asthma in adults: comparison of high resolution computed tomography of the lungs after one year of follow-up. Rev Hosp Clin Fac Med Sao Paulo 2001; 56 (03) 63-68
  • 18 Abo-Leyah H, Finch S, Keir H, Fardon T, Chalmers J. Peripheral blood eosinophilia and clinical phenotype in bronchiectasis. In: Respiratory Infections. European Respiratory Society; 2018: PA2665
  • 19 Chen LW, McShane PJ, Karkowsky W. et al. De novo development of bronchiectasis in patients with hematologic malignancy. Chest 2017; 152 (03) 683-685
  • 20 De Soyza A, McDonnell MJ, Goeminne PC. et al. Bronchiectasis rheumatoid overlap syndrome is an independent risk factor for mortality in patients with bronchiectasis: a multicenter cohort study. Chest 2017; 151 (06) 1247-1254
  • 21 Gibb WR, Dhillon DP, Zilkha KJ, Cole PJ. Bronchiectasis with ulcerative colitis and myelopathy. Thorax 1987; 42 (02) 155-156
  • 22 Eaton TE, Lambie N, Wells AU. Bronchiectasis following colectomy for Crohn's disease. Thorax 1998; 53 (06) 529-531
  • 23 Aliberti S, Lonni S, Dore S. et al. Clinical phenotypes in adult patients with bronchiectasis. Eur Respir J 2016; 47 (04) 1113-1122
  • 24 Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc 2015; 12 (11) 1602-1611
  • 25 Loebinger MR, Wells AU, Hansell DM. et al. Mortality in bronchiectasis: a long-term study assessing the factors influencing survival. Eur Respir J 2009; 34 (04) 843-849
  • 26 Martínez-García MA, Soler-Cataluña J-J, Perpiñá-Tordera M, Román-Sánchez P, Soriano J. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 2007; 132 (05) 1565-1572
  • 27 Martínez-García MA, Perpiñá-Tordera M, Román-Sánchez P, Soler-Cataluña JJ. Quality-of-life determinants in patients with clinically stable bronchiectasis. Chest 2005; 128 (02) 739-745
  • 28 Chalmers JD, Aliberti S, Filonenko A. et al. Characterization of the “frequent exacerbator phenotype” in bronchiectasis. Am J Respir Crit Care Med 2018; 197 (11) 1410-1420
  • 29 Wilson R, Aksamit T, Aliberti S. et al. Challenges in managing Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respir Med 2016; 117: 179-189
  • 30 Frederiksen B, Koch C, Høiby N. Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 1997; 23 (05) 330-335
  • 31 Mayer-Hamblett N, Kronmal RA, Gibson RL. et al; EPIC Investigators. Initial Pseudomonas aeruginosa treatment failure is associated with exacerbations in cystic fibrosis. Pediatr Pulmonol 2012; 47 (02) 125-134
  • 32 White L, Mirrani G, Grover M, Rollason J, Malin A, Suntharalingam J. Outcomes of Pseudomonas eradication therapy in patients with non-cystic fibrosis bronchiectasis. Respir Med 2012; 106 (03) 356-360
  • 33 McDonnell MJ, Jary HR, Perry A. et al. Non cystic fibrosis bronchiectasis: a longitudinal retrospective observational cohort study of Pseudomonas persistence and resistance. Respir Med 2015; 109 (06) 716-726
  • 34 Wickremasinghe M, Ozerovitch LJ, Davies G. et al. Non-tuberculous mycobacteria in patients with bronchiectasis. Thorax 2005; 60 (12) 1045-1051
  • 35 Kwak N, Lee JH, Kim H-J, Kim SA, Yim J-J. New-onset nontuberculous mycobacterial pulmonary disease in bronchiectasis: tracking the clinical and radiographic changes. BMC Pulm Med 2020; 20 (01) 293
  • 36 Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern: the Lady Windermere syndrome. Chest 1992; 101 (06) 1605-1609
  • 37 Mirsaeidi M, Hadid W, Ericsoussi B, Rodgers D, Sadikot RT. Non-tuberculous mycobacterial disease is common in patients with non-cystic fibrosis bronchiectasis. Int J Infect Dis 2013; 17 (11) e1000-e1004
  • 38 Schweitzer MD, Salamo O, Campos M, Schraufnagel DE, Sadikot R, Mirsaeidi M. Body habitus in patients with and without bronchiectasis and non-tuberculous mycobacteria. PLoS One 2017; 12 (09) e0185095
  • 39 Araújo D, Shteinberg M, Aliberti S. et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur Respir J 2018; 51 (02) 1701953
  • 40 Altenburg J, de Graaff CS, Stienstra Y. et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 2013; 309 (12) 1251-1259
  • 41 Brodt AM, Stovold E, Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur Respir J 2014; 44 (02) 382-393
  • 42 Lee AL, Hill CJ, Cecins N. et al. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis--a randomised controlled trial. Respir Res 2014; 15 (01) 44
  • 43 Sabogal Piñeros YS, Altenburg J, Vijverberg S. et al. Explorative analyses of inflammatory pathways and the effect of azithromycin in bronchiectasis patients. In: Monitoring Airway Disease. European Respiratory Society; 2019: PA2671
  • 44 Huang JT-J, Dicker A, Shoemark A. et al. Endotyping of COPD, bronchiectasis and their overlap syndrome by integrated sputum proteome/microbiome. In: Molecular Pathology and Funct. Genomics. European Respiratory Society; 2019: OA473
  • 45 Huang JT-J, Gao Y, Barton A. et al. Sputum proteomics identifies distinct endotypes of exacerbations in bronchiectasis. In: Molecular Pathology and Funct. Genomics. European Respiratory Society; 2020: 324
  • 46 Shoemark A, Smith A, Giam A. et al. Inflammatory molecular endotypes in bronchiectasis. In: Respiratory Infections. European Respiratory Society; 2019: PA2170
  • 47 Keir HR, Shoemark A, Dicker AJ. et al. Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. Lancet Respir Med 2021; S2213-2600 (20)30504-X