Synlett 2023; 34(02): 133-136
DOI: 10.1055/s-0041-1738427
letter

A Synthesis of Furan-2-iminophosphoranes under Appel-Type Reaction Conditions

Issa Yavari
,
Hamed Saffarian
,
We are grateful to the Research Council of Tarbiat Modares University and Iran’s National Elites Foundation for supporting this work.


Abstract

Phenacylmalononitriles reacted with triphenylphosphine and carbon tetrachloride in an Appel-type, cyclization/aromatization reaction to afford 5-aryl-2-[(triphenylphosphoranylidene)amino]-3-furonitriles in yields of 75–92%. The reaction proceeded smoothly in the presence of excess amounts of Ph3P and CCl4 without any base or catalyst at room temperature. The structure of one product was confirmed by X-ray crystallographic analysis.

Supporting Information



Publication History

Received: 24 May 2022

Accepted after revision: 18 September 2022

Article published online:
16 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Johnson AW. Ylides and Imines of Phosphorus . Wiley; New York: 1993
    • 1b Quin LD. A Guide to Organophosphorus Chemistry . Wiley; New York: 2000
    • 1c Xu S, He Z. RSC Adv. 2013; 3: 16885
    • 1d Karanam P, Reddy GM, Koppolu SR, Lin W. Tetrahedron Lett. 2018; 59: 59
    • 2a Wittig G, Rieber M. Liebigs Ann. Chem. 1949; 562: 177
    • 2b Wittig G, Schöllkopf U. Chem. Ber. 1954; 87: 1318
    • 2c Wittig G, Werner H. Chem. Ber. 1955; 88: 1654
    • 2d Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
    • 3a Lao Z, Toy PH. Beilstein J. Org. Chem. 2016; 12: 2577
    • 3b Cai L, Zhang K, Chen S, Lepage RJ, Houk KN, Krenske EH, Kwon O. J. Am. Chem. Soc. 2019; 141: 9537
    • 3c Tukhtaev HB, Ivanov KL, Bezzubov SI, Cheshkov DA, Melnikov MY, Budynina EM. Org. Lett. 2019; 21: 1087
    • 3d Ismailani US, Munch M, Mair BA, Rotstein BH. Chem. Commun. 2021; 57: 5266
    • 4a Wolkoff P. Can. J. Chem. 1975; 53: 1333
    • 4b Shipilovskikh SA, Vaganov VY, Denisova EI, Rubtsov AE, Malkov AV. Org. Lett. 2018; 20: 728
    • 4c Chen J, Lin J.-H, Xiao J.-C. Org. Lett. 2018; 20: 3061
    • 4d Longwitz L, Jopp S, Werner T. J. Org. Chem. 2019; 84: 7863
    • 4e Yavari I, Khaledian O. Chem. Commun. 2020; 56: 9150
  • 5 Fletcher S. Org. Chem. Front. 2015; 2: 739
    • 6a van Berkel SS, van Eldijk MB, van Hest JC. M. Angew. Chem. Int. Ed. 2011; 50: 8806
    • 6b Meguro T, Terashima N, Ito H, Koike Y, Kii I, Yoshida S, Hosoya T. Chem. Commun. 2018; 54: 7904
    • 6c Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
    • 6d Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. Chem. Rev. 2020; 120: 4301
    • 7a Kirsanov AV. Russ. Chem. Bull. 1954; 3: 551
    • 7b Saplinova T, Lehnert C, Böhme U, Wagler J, Kroke E. New J. Chem. 2010; 34: 1893
    • 8a Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos J. Tetrahedron 2007; 63: 523
    • 8b Hajos G, Nagy I. Curr. Org. Chem. 2008; 12: 39
    • 8c Palacios F, Aparicio D, Rubiales G, Alonso C, de los Santos JM. Curr. Org. Chem. 2009; 13: 810
    • 10a Yang J, Farley AJ. M, Dixon D. Chem. Sci. 2017; 8: 606
    • 10b Formica M, Sorin G, Farley AJ, Díaz J, Paton RS, Dixon D. Chem. Sci. 2018; 9: 6969
    • 10c Formica M, Rozsar D, Su G, Farley AJ, Dixon DJ. Acc. Chem. Res. 2020; 53: 2235
    • 10d Das S, Hu Q, Kondoh A, Terada M. Angew. Chem. Int. Ed. 2021; 60: 1417
    • 11a Bézier D, Daugulis O, Brookhart M. Organometallics 2017; 36: 2947
    • 11b Lv C, Zhou L, Yuan R, Mahmood Q, Xu G, Wang Q. New J. Chem. 2020; 44: 1648
    • 12a Rodríguez-Álvarez MJ, Vidal C, Schumacher S, Borge J, García-Álvarez J. Chem. Eur. J. 2017; 23: 3425
    • 12b Cheisson T, Ricard L, Heinemann FW, Meyer K, Auffrant A, Nocton G. Inorg. Chem. 2018; 57: 9230
    • 12c Mazaud L, Tricoire M, Bourcier S, Cordier M, Gandon V, Auffrant A. Organometallics 2020; 39: 719
  • 13 Abdelhamid AO, Negm AM, Abbas IM. J. Prakt. Chem. 1989; 331: 31
  • 14 5-Phenyl-2-[(triphenylphosphoranylidene)amino]-3-furonitrile (2a); Typical Procedure CCl4 (461 mg, 3 equiv) was added dropwise to a reaction flask containing phenacylmalononitrile (1a; 184 mg, 1 equiv) and Ph3P (657 mg, 2.5 equiv) in MeCN (6 mL). The flask was sealed and the mixture was stirred at r.t. (25 ℃) until the reaction was complete [~4 h; TLC, hexane–EtOAc (3:1)]. The mixture was then filtered, and the precipitate was washed with EtOH to give a pale-yellow solid; yield: 408 mg (92%); mp 203–205 °C. (In cases where no precipitate was formed, the reaction flask was scratched and placed in a freezer at –18 ℃; after 24 h, crystals of the product were collected by filtration and washed with a sufficient amount of cold MeCN.) IR (KBr): 2207 (CN), 1504 (C=C), 1288 (P=N), 1112 (C–O) cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.54 (br s, 1 H, CH), 7.05–7.08 (m, 3 H, Ar), 7.17–7.20 (m, 2 H, Ar), 7.50–7.53 (m, 6 H, PPh3), 7.59–7.62 (m, 3 H, PPh3), 7.80 (dd, 3 J H–H = 8.0 Hz, 3 J P–H = 12.5 Hz, 6 H, PPh3). 13C NMR (125 MHz, CDCl3): δ = 77.4 (C–CN), 106.7 (CH of furan), 118.2 (CN), 122.3 (2 CH of Ph), 126.1 (CH of Ph), 128.6 (2 CH of Ph), 128.8 (d, 1 J P–C = 103.4 Hz, PPh3), 129.1 (d, 3 J P–C = 12.5 Hz, PPh3), 130.5 (s, CH of Ph), 132.7 (d, 4 J P–C = 2.4 Hz, PPh3), 132.8 (d, 2 J P–C = 10.6 Hz, PPh3), 142.9 (C-5 of furan), 164.7 (d, 2 J P–C = 5.5 Hz, C–N=P). 31P NMR (202 MHz, CDCl3): δ = 14.14 (Ph3P=N). EI-MS: m/z (%) = 445 [M + 1]+ (10), 444 [M+] (32), 279 (10), 262 (100), 183 (58), 108 (37), 77 (2). Anal. Calcd for C29H21N2OP (444.47): C, 78.37; H, 4.76; N, 6.30. Found: C, 78.08; H, 4.74; N, 6.32.
  • 15 CCDC 1996238 contains the supplementary crystallographic data for compound 2c. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures