CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2021; 40(04): e349-e360
DOI: 10.1055/s-0041-1740646
Review Article | Artigo de Revisão

Clinical Applications of Additive Manufacturing Models in Neurosurgery: a Systematic Review

Aplicações clínicas de modelos de manufatura aditiva na neurocirurgia: uma revisão sistemática
1   Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
2   Department of Neurovascular, Instituto de Neurologia de Curitiba, Curitiba, PR, Brazil
,
3   Department of Neurosurgery, Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil
,
4   Department of Neurology, Medical School, Pontifícia Universidade Católica, Sorocaba, SP, Brazil
5   Division of Neurosurgery at Hospital Santa Paula/Dasa, São Paulo, SP, Brazil
6   Department of Research and Innovation Laboratory of Cellular and Molecular Biology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
,
1   Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
,
1   Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
› Author Affiliations

Abstract

Introduction Three-dimensional (3D) printing technologies provide a practical and anatomical way to reproduce precise tailored-made models of the patients and of the diseases. Those models can allow surgical planning, besides training and surgical simulation in the treatment of neurosurgical diseases.

Objective The aim of the present article is to review the scenario of the development of different types of available 3D printing technologies, the processes involved in the creation of biomodels, and the application of those advances in the neurosurgical field.

Methods We searched for papers that addressed the clinical application of 3D printing in neurosurgery on the PubMed, Ebsco, Web of Science, Scopus, and Science Direct databases. All papers related to the use of any additive manufacturing technique were included in the present study.

Results Studies involving 3D printing in neurosurgery are concentrated on three main areas: (1) creation of anatomical tailored-made models for planning and training; (2) development of devices and materials for the treatment of neurosurgical diseases, and (3) biological implants for tissues engineering. Biomodels are extremely useful in several branches of neurosurgery, and their use in spinal, cerebrovascular, endovascular, neuro-oncological, neuropediatric, and functional surgeries can be highlighted.

Conclusions Three-dimensional printing technologies are an exclusive way for direct replication of specific pathologies of the patient. It can identify the anatomical variation and provide a way for rapid construction of training models, allowing the medical resident and the experienced neurosurgeon to practice the surgical steps before the operation.

Resumo

Introdução as tecnologias de impressão 3D proporcionam uma forma prática e anatômica de reproduzir modelos precisos e feitos sob medida dos pacientes e das doenças. Estes modelos podem permitir o planejamento cirúrgico, além de treinamento e simulação cirúrgica no tratamento de doenças neurocirúrgicas.

Objetivo o objetivo do presente artigo é revisar o cenário de desenvolvimento de diferentes tipos de tecnologias de impressão 3D disponíveis, os processos envolvidos na criação de biomodelos e a aplicação destes avanços no campo neurocirúrgico.

Métodos Procuramos por estudos que abordaram a aplicação clínica da impressão 3D em neurocirurgia nas bases de dados PubMed, Ebsco, Web of Science, Scopus e Science Direct. Todos os artigos relacionados ao uso de qualquer técnica de fabricação aditiva foram incluídos no presente estudo.

Resultados Estudos envolvendo impressão 3D em neurocirurgia estão concentrados em três áreas principais: (1) criação de modelos anatômicos adaptados para planejamento e treinamento; (2) desenvolvimento de dispositivos e materiais para o tratamento de doenças neurocirúrgicas, e (3) implantes biológicos para a engenharia de tecidos. Em vários ramos da neurocirurgia, os biomodelos são extremamente úteis. Pode-se destacar o uso em cirurgias de coluna, cerebrovasculares, endovasculares, neuro-oncológicas, neuropediátricas e funcionais.

Conclusões As tecnologias de impressão 3D são uma forma exclusiva de replicação direta das patologias específicas do paciente. Elas podem identificar a variação anatômica e fornecer uma maneira para a construção rápida de modelos do treinamento, permitindo que o residente médico e o neurocirurgião experiente pratiquem as etapas cirúrgicas antes da operação.

Contributions of the Authors

Leal A. G.: Conception and design, data analysis and interpretation, drafting of the manuscript; Ramina R.: Critical revision of the manuscript, reading and approval of the final manuscript; Aguiar P. H. P.: critical revision of the manuscript, reading and approval of the final manuscript; Souza M. A.: Research supervision and critical revision of the manuscript, reading and approval of the final manuscript; Fernandes B. L.: critical revision of the manuscript, reading and approval of the final manuscript; Nohama P.: research supervision and critical revision of the manuscript, reading and approval of the final manuscript.




Publication History

Received: 22 July 2021

Accepted: 13 August 2021

Article published online:
26 November 2021

© 2021. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 McGurk M, Amis AA, Potamianos P, Goodger NM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl 1997; 79 (03) 169-174
  • 2 Lo LJ, Chen YR. Three-dimensional computed tomography imaging in craniofacial surgery: morphological study and clinical applications. Chang Gung Med J 2003; 26 (01) 1-11
  • 3 Nishimura PLG, Rodrigues OV, Botura Jr G, Silva LA. Prototipagem rápida: um comparativo entre uma tecnologia aditiva e uma subtrativa. In: Anais do 12° Congresso Brasileiro de Pesquisa e Desenvolvimento em Design. São Paulo: Blucher, 2016. Blucher Design Proceedings 2016; 9 (02) 4481-91
  • 4 Esses SJ, Berman P, Bloom AI, Sosna J. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am J Roentgenol 2011; 196 (06) W683-8
  • 5 Vloeberghs M, Glover A, Benford S, Jones A, Wang P, Becker A. Virtual neurosurgery, training for the future. Br J Neurosurg 2007; 21 (03) 262-267
  • 6 Louvrier A, Marty P, Barrabé A. et al. How useful is 3D printing in maxillofacial surgery?. J Stomatol Oral Maxillofac Surg 2017; 118 (04) 206-212
  • 7 Velasco I, Vahdani S, Ramos H. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning. J Clin Exp Dent 2017; 9 (09) e1103-e1108
  • 8 D'Urso PS, Barker TM, Earwaker WJ. et al. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg 1999; 27 (01) 30-37
  • 9 Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery - A literature review. J Formos Med Assoc 2018; 117 (07) 547-558
  • 10 Chan HH, Siewerdsen JH, Vescan A, Daly MJ, Prisman E, Irish JC. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling. PLoS One 2015; 10 (09) e0136370
  • 11 Eltorai AE, Nguyen E, Daniels AH. Three-Dimensional Printing in Orthopedic Surgery. Orthopedics 2015; 38 (11) 684-687
  • 12 Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini A, Oklu R. Three-Dimensional Printing: An Enabling Technology for IR. J Vasc Interv Radiol 2016; 27 (06) 859-865
  • 13 Dankowski R, Baszko A, Sutherland M. et al. 3D heart model printing for preparation of percutaneous structural interventions: description of the technology and case report. Kardiol Pol 2014; 72 (06) 546-551
  • 14 Sardari Nia P, Heuts S, Daemen J. et al. Preoperative planning with three-dimensional reconstruction of patient's anatomy, rapid prototyping and simulation for endoscopic mitral valve repair. Interact Cardiovasc Thorac Surg 2017; 24 (02) 163-168
  • 15 Volpato N. Prototipagem Rápida. Tecnologias e Aplicações. São Paulo: Blucher; 2007. . 272 p.
  • 16 Erbano BO, Opolski AC, Olandoski M. et al. Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cir Bras 2013; 28 (11) 756-761
  • 17 Leal AG, Pagnan LB, Kondo RT, Foggiatto JA, Agnoletto GJ, Ramina R. Elastomers three-dimensional biomodels proven to be a trustworthy representation of the angiotomographic images. Arq Neuropsiquiatr 2016; 74 (09) 713-717
  • 18 Gorni AA. Introdução à prototipagem rápida e seus processos. [cited 2013 Sep 15]. Available from: http://www.gorni.eng.br/protrap.html
  • 19 Grimm T. User's guide to rapid prototyping. Dearborn, MI: Society of Manufacturing Engineeers; 2004. . 404 p.
  • 20 Tappa K, Jammalamadaka U. Novel Biomaterials Used in Medical 3D Printing Techniques. J Funct Biomater 2018; 9 (01) E17
  • 21 International Standard. ISO/ASTM 52900:2015(E): Additive manufacturing – General principles – Terminology 2015. Available at: https://www.colliercountyfl.gov/home/showdocument?id=90543
  • 22 Berry E, Brown JM, Connell M. et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys 1997; 19 (01) 90-96
  • 23 Park J, Tari MJ, Hahn HT. Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal 2000; 6 (01) 36-50
  • 24 D'Urso PS, Thompson RG, Atkinson RL. et al. Cerebrovascular biomodelling: a technical note. Surg Neurol 1999; 52 (05) 490-500
  • 25 Iacoangeli M, Nocchi N, Nasi D. et al. Minimally Invasive Supraorbital Key-hole Approach for the Treatment of Anterior Cranial Fossa Meningiomas. Neurol Med Chir (Tokyo) 2016; 56 (04) 180-185
  • 26 Garrido BJ, Wood KE. Navigated placement of iliac bolts: description of a new technique. Spine J 2011; 11 (04) 331-335
  • 27 Balachandran R, Fitzpatrick JM, Labadie RF. Accuracy of image-guided surgical systems at the lateral skull base as clinically assessed using bone-anchored hearing aid posts as surgical targets. Otol Neurotol 2008; 29 (08) 1050-1055
  • 28 Randazzo M, Pisapia JM, Singh N, Thawani JP. 3D printing in neurosurgery: A systematic review. Surg Neurol Int 2016; 7 (Suppl. 33) S801-S809
  • 29 Hopper KD, Pierantozzi D, Potok PS. et al. The quality of 3D reconstructions from 1.0 and 1.5 pitch helical and conventional CT. J Comput Assist Tomogr 1996; 20 (05) 841-847
  • 30 Barker TM, Earwaker WJ, Lisle DA. Accuracy of stereolithographic models of human anatomy. Australas Radiol 1994; 38 (02) 106-111
  • 31 Hespel AM. Three-Dimensional Printing Role in Neurologic Disease. Vet Clin North Am Small Anim Pract 2018; 48 (01) 221-229
  • 32 Abla AA, Lawton MT. Three-dimensional hollow intracranial aneurysm models and their potential role for teaching, simulation, and training. World Neurosurg 2015; 83 (01) 35-36
  • 33 Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 2004; 100 (01) 139-145
  • 34 Ishikawa T, Morita A, Fukushima T, Ono H. Three-Dimensional Cerebral Aneurysm Models for Surgical Simulation and Education - Development of Aneurysm Models with Perforating Arteries and for Application of Fenestrated Clips. Open Journal of Modern Neurosurgery 2014; 4 (02) 59-63
  • 35 Anderson JR, Thompson WL, Alkattan AK. et al. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg 2016; 8 (05) 517-520
  • 36 Ionita CN, Mokin M, Varble N. et al. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proc SPIE Int Soc Opt Eng 2014; 9038:90380M.
  • 37 Kondo K, Nemoto M, Masuda H. et al. Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer. Neurol Med Chir (Tokyo) 2015; 55 (07) 592-598
  • 38 Lawton MT, Spetzler RF. Surgical management of giant intracranial aneurysms: experience with 171 patients. Clin Neurosurg 1995; 42: 245-266
  • 39 Rinne J, Hernesniemi J, Niskanen M, Vapalahti M. Management outcome for multiple intracranial aneurysms. Neurosurgery 1995; 36 (01) 31-37 , discussion 37–38
  • 40 Kimura T, Morita A, Nishimura K. et al. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 2009; 65 (04) 719-725 , discussion 725–726
  • 41 Mashiko T, Otani K, Kawano R. et al. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg 2015; 83 (03) 351-361
  • 42 Mashiko T, Kaneko N, Konno T, Otani K, Nagayama R, Watanabe E. Training in cerebral aneurysm clipping using self-made 3-Dimensional models. J Surg Educ 2017; 74 (04) 681-689
  • 43 Leal A, Souza M, Nohama P. Additive Manufacturing of 3D Biomodels as Adjuvant in Intracranial Aneurysm Clipping. Artif Organs 2019; 43 (01) E9-E15
  • 44 Weinstock P, Prabhu SP, Flynn K, Orbach DB, Smith E. Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J Neurosurg Pediatr 2015; 16 (05) 584-589
  • 45 Dong M, Chen G, Qin K. et al. Development of three-dimensional brain arteriovenous malformation model for patient communication and young neurosurgeon education. Br J Neurosurg 2018; 32 (06) 646-649
  • 46 Shah A, Jankharia B, Goel A. Three-dimensional model printing for surgery on arteriovenous malformations. Neurol India 2017; 65 (06) 1350-1354
  • 47 Santangelo G, Mix D, Ghazi A, Stoner M, Vates GE, Stone JJ. Development of a Whole-Task Simulator for Carotid Endarterectomy. Oper Neurosurg (Hagerstown) 2018; 14 (06) 697-704 DOI: 10.1093/ons/opx209.
  • 48 Ishibashi T, Takao H, Suzuki T. et al. Tailor-made shaping of microcatheters using three-dimensional printed vessel models for endovascular coil embolization. Comput Biol Med 2016; 77: 59-63
  • 49 Namba K, Higaki A, Kaneko N, Mashiko T, Nemoto S, Watanabe E. Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases. World Neurosurg 2015; 84 (01) 178-186
  • 50 Xu WH, Liu J, Li ML, Sun ZY, Chen J, Wu JH. 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph. Ann Transl Med 2014; 2 (08) 74
  • 51 Silva Jr EBda, Aurich LA, Silva Jr. LFMda, Milano JB, Ramina M. Neuronavigation for Intracranial Meningiomas. J Bras Neurocirurg 2011; 22 (04) 143-149
  • 52 Oishi M, Fukuda M, Yajima N. et al. Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. J Neurosurg 2013; 119 (01) 94-105
  • 53 Gargiulo P, Árnadóttir Í, Gíslason M, Edmunds K, Ólafsson I. New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning. J Healthc Eng 2017; 2017: 1439643
  • 54 Wanibuchi M, Noshiro S, Sugino T. et al. Training for Skull Base Surgery with a Colored Temporal Bone Model Created by Three-Dimensional Printing Technology. World Neurosurg 2016; 91: 66-72
  • 55 Muelleman TJ, Peterson J, Chowdhury NI, Gorup J, Camarata P, Lin J. Individualized Surgical Approach Planning for Petroclival Tumors Using a 3D Printer. J Neurol Surg B Skull Base 2016; 77 (03) 243-248
  • 56 Kondo K, Harada N, Masuda H. et al. A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 2016; 158 (06) 1213-1219
  • 57 Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg 2014; 120 (02) 489-492
  • 58 Lara WC, Schweitzer J, Lewis RP, Odum BC, Edlich RF, Gampper TJ. Technical considerations in the use of polymethylmethacrylate in cranioplasty. J Long Term Eff Med Implants 1998; 8 (01) 43-53
  • 59 Cheng AC, Wee AG. Reconstruction of cranial bone defects using alloplastic implants produced from a stereolithographically-generated cranial model. Ann Acad Med Singap 1999; 28 (05) 692-696
  • 60 Wulf J, Busch LC, Golz T. et al. CAD generated mold for preoperative implant fabrication in cranioplasty. Stud Health Technol Inform 2005; 111: 608-610
  • 61 Tan ET, Ling JM, Dinesh SK. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. J Neurosurg 2016; 124 (05) 1531-1537
  • 62 Coelho G, Chaves TMF, Goes AF, Del Massa EC, Moraes O, Yoshida M. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst 2018; 34 (04) 749-756
  • 63 Martelli N, Serrano C, van den Brink H. et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery 2016; 159 (06) 1485-1500
  • 64 LoPresti M, Daniels B, Buchanan EP, Monson L, Lam S. Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note. J Neurosurg Pediatr 2017; 19 (04) 490-494
  • 65 Ghizoni E, de Souza JPSAS, Raposo-Amaral CE. et al. 3D-Printed Craniosynostosis Model: New Simulation Surgical Tool. World Neurosurg 2018; 109: 356-361
  • 66 Nahumi N, Shohet MR, Bederson JB, Elahi E. Frontorbital Fibrous Dysplasia Resection and Reconstruction With Custom Polyetherlatone Alloplast. J Craniofac Surg 2015; 26 (08) e720-e722
  • 67 Waran V, Narayanan V, Karuppiah R. et al. Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul Healthc 2015; 10 (01) 43-48
  • 68 Ryan JR, Chen T, Nakaji P, Frakes DH, Gonzalez LF. Ventriculostomy Simulation Using Patient-Specific Ventricular Anatomy, 3D Printing, and Hydrogel Casting. World Neurosurg 2015; 84 (05) 1333-1339
  • 69 Narayanan V, Narayanan P, Rajagopalan R. et al. Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol 2015; 272 (03) 753-757
  • 70 Waran V, Menon R, Pancharatnam D. et al. The creation and verification of cranial models using three-dimensional rapid prototyping technology in field of transnasal sphenoid endoscopy. Am J Rhinol Allergy 2012; 26 (05) 132-136
  • 71 Naftulin JS, Kimchi EY, Cash SS. Streamlined, Inexpensive 3D Printing of the Brain and Skull. PLoS One 2015; 10 (08) e0136198
  • 72 Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg 2017; 3 (03) 433-443
  • 73 D'Urso PS, Askin G, Earwaker JS, Merry GS, Thompson RG, Barker TM. et al. Spinal biomodeling. Spine 1999; 24 (12) 1247-1251
  • 74 Izatt MT, Thorpe PL, Thompson RG. et al. The use of physical biomodelling in complex spinal surgery. Eur Spine J 2007; 16 (09) 1507-1518
  • 75 Wu ZX, Huang LY, Sang HX. et al. Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech 2011; 24 (07) 444-450
  • 76 Provaggi E, Leong JJH, Kalaskar DM. Applications of 3D printing in the management of severe spinal conditions. Proc Inst Mech Eng H 2017; 231 (06) 471-486
  • 77 Lu S, Xu YQ, Zhang YZ. et al. A novel computer-assisted drill guide template for lumbar pedicle screw placement: a cadaveric and clinical study. Int J Med Robot 2009; 5 (02) 184-191
  • 78 Phan K, Sgro A, Maharaj MM, D'Urso P, Mobbs RJ. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J Spine Surg 2016; 2 (04) 314-318
  • 79 Mobbs RJ, Coughlan M, Thompson R, Sutterlin III CE, Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 2017; 26 (04) 513-518
  • 80 Javan R, Bansal M, Tangestanipoor A. A Prototype Hybrid Gypsum-Based 3-Dimensional Printed Training Model for Computed Tomography-Guided Spinal Pain Management. J Comput Assist Tomogr 2016; 40 (04) 626-631
  • 81 Goel A, Jankharia B, Shah A, Sathe P. Three-dimensional models: an emerging investigational revolution for craniovertebral junction surgery. J Neurosurg Spine 2016; 25 (06) 740-744
  • 82 Gao F, Wang Q, Liu C, Xiong B, Luo T. Individualized 3D printed model-assisted posterior screw fixation for the treatment of craniovertebral junction abnormality: a retrospective study. J Neurosurg Spine 2017; 27 (01) 29-34
  • 83 Yin Y, Yu X, Tong H, Xu T, Wang P, Qiao G. [Exploratory study of 3D printing technique in the treatment of basilar invagination and atlantoaxial dislocation]. Zhonghua Yi Xue Za Zhi 2015; 95 (37) 3004-3007
  • 84 Taverner MG, Monagle JP. Three-Dimensional Printing: An Aid to Epidural Access for Neuromodulation. Neuromodulation 2017; 20 (06) 622-626
  • 85 Taft RM, Kondor S, Grant GT. Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent 2011; 106 (06) 399-408
  • 86 Ploch CC, Mansi CSSA, Jayamohan J, Kuhl E. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning. World Neurosurg 2016; 90: 668-674
  • 87 Mashiko T, Konno T, Kaneko N, Watanabe E. Training in Brain Retraction Using a Self-Made Three-Dimensional Model. World Neurosurg 2015; 84 (02) 585-590
  • 88 Konno T, Mashiko T, Oguma H, Kaneko N, Otani K, Watanabe E. [Rapid 3-Dimensional Models of Cerebral Aneurysm for Emergency Surgical Clipping]. No Shinkei Geka 2016; 44 (08) 651-660
  • 89 Ma X, Qu X, Zhu W. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 2016; 113 (08) 2206-2211
  • 90 Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends Biotechnol 2018; 36 (04) 457-472
  • 91 Zhu W, Cui H, Boualam B. et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology 2018; 29 (18) 185101
  • 92 Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials 2018; 162: 34-46