Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000160.xml
neuroreha 2016; 08(03): 126-133
DOI: 10.1055/s-0042-111672
DOI: 10.1055/s-0042-111672
Schwerpunkt Neuroreha nach Querschnittlähmung
Aus der Praxis
Steuerung von Neuroprothesen bei Querschnittlähmung: der nichtinvasive Graz-BCI-Ansatz
Further Information
Publication History
Publication Date:
09 September 2016 (online)
Zusammenfassung
Personen mit hoher Querschnittlähmung müssen neben dem Verlust der Steh- und Gehfunktion und einer Funktionsminderung des Blasen-Darm-Trakts auch massive Einschränkungen in den oberen Extremitäten hinnehmen. Mit dem Verlust der Greiffunktion und einhergehender Reduktion der Armfunktion droht die lebenslange Abhängigkeit von Dritten. Brain-Computer Interfaces (BCI) könnten bei der Steuerung von Neuroprothesen hilfreich sein.
-
Literatur
- 1 Birbaumer N et al. A spelling device for the paralysed. Nature 1999; 398 (6725) 297-298
- 2 Blankertz B et al. Single-trial analysis and classification of ERP components – A tutorial. NeuroImage 2011; 56 (2) 814-825
- 3 Bouton CE et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016; DOI: 10.1038/nature17435.
- 4 Bradberry TJ, Gentili RJ, Contreras-Vidal JL. Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 2010; 30 (9) 3432-3437
- 5 Collinger JL et al. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet 2013; 381 (9866) 557-564
- 6 Faller J et al. Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI. IEEE transactions on neural systems and rehabilitation engineering: A publication of the IEEE Engineering in Medicine and Biology Society 2012; 20 (3) 313-319
- 7 Hochberg LR et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006; 442 (7099) 164-171
- 8 Holz EM et al. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: A case study. Archives of Physical Medicine and Rehabilitation 2015; 96 (Suppl. 03) 16-26
- 9 Hotson G et al. High precision neural decoding of complex movement trajectories using recursive Bayesian estimation with dynamic movement primitives. IEEE Robotics and Automation Letters 2016; 1 (2) 676-683
- 10 Khaliliardali Z et al. Detection of anticipatory brain potentials during car driving. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012
- 11 Kim JH, Bießmann F, Lee SW. Decoding three-dimensional trajectory of executed and imagined arm movements from electroencephalogram signals. IEEE transactions on neural systems and rehabilitation engineering: A publication of the IEEE Engineering in Medicine and Biology Society 2015; 23 (5) 867-876
- 12 Kreilinger A et al. Neuroprosthesis control via a noninvasive hybrid brain-computer interface. IEEE Intelligent Systems 2013; 28 (5) 40-43
- 13 Kübler A et al. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 2005; 64 (10) 1775-1777
- 14 Lv J, Li Y, Gu Z. Decoding hand movement velocity from electroencephalogram signals during a drawing task. Biomedical engineering online 2010; 9 (64) 1-21
- 15 Millán JdR et al. Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Frontiers in Neuroscience 2010; 1
- 16 Müller-Putz GR et al. EEG-based neuroprosthesis control: A step towards clinical practice. Neuroscience Letters 2005; 382 (1–2) 169-174
- 17 Müller-Putz GR et al. Brain-computer interfaces for control of neuroprostheses: From synchronous to asynchronous mode of operation. Biomedizinische Technik. Biomedical engineering 2006; 51 (2) 57-63
- 18 Müller-Putz GR et al. Tools for brain-computer interaction: A general concept for a hybrid BCI. Frontiers in Neuroinformatics 2011; 5: 30
- 19 Müller-Putz GR et al. Towards noninvasive hybrid brain-computer interfaces: Framework, practice, clinical application, and beyond. Proceedings of the IEEE 2015; 103 (6) 926-943
- 20 Ofner P, Müller-Putz GR. Decoding of velocities and positions of 3D arm movement from EEG. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Conference 2012. IEEE Engineering in Medicine and Biology Society 2012; 6406-6409
- 21 Ofner P, Müller-Putz GR. Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. IEEE Transactions on Biomedical Engineering 2015; 62 (3) 972-981
- 22 Peckham PH et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: A multicenter study. Archives of Physical Medicine and Rehabilitation 2001; 82 (10) 1380-1388
- 23 Peckham PH et al. An advanced neuroprosthesis for restoration of hand and upper arm control using an implantable controller. The Journal of Hand Surgery 2002; 27 (2) 265-276
- 24 Pereira J, Ofner P, Müller-Putz GR. Goal-directed or aimless? EEG differences during the preparation of a reach-and-touch task. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015; Im Internet: http://dx.doi.org/10.1109/embc.2015.7318652 Stand: 27.05.2016
- 25 Pfurtscheller G et al. „Thought”-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters 2003; 351 (1) 33-36
- 26 Pfurtscheller G et al. The hybrid BCI. Frontiers in neuroscience 2010; 4: 30
- 27 Pistohl T et al. Prediction of arm movement trajectories from ECoG-recordings in humans. Journal of Neuroscience Methods 2008; 167 (1) 105-114
- 28 Pokorny C et al. The auditory P300-based single-switch brain-computer interface: paradigm transition from healthy subjects to minimally conscious patients. Artificial intelligence in medicine 2013; 59 (2) 81-90
- 29 Popovic C, Dejan P, Thomas S. Central nervous system lesions leading to disability. Automatica: A Journal of IFAC, the International Federation of Automatic Control 2008; 18 (2) 11-23
- 30 Rohm M et al. Modular FES-hybrid orthosis for individualized setup of BCI controlled motor substitution and recovery. International Journal of Bioelectromagnetism 2011; 13 (3) 127-128
- 31 Rohm M et al. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artificial Intelligence in Medicine 2013; 59 (2) 133-142
- 32 Rupp R et al. Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by noninvasive hybrid neuroprostheses. Proceedings of the IEEE 2015; 103 (6) 954-968
- 33 Scherer R et al. Brain–computer interfacing: ore than the sum of its parts. Soft Computing 2012; 17 (2) 317-331
- 34 Shibasaki H, Hallett M. What is the Bereitschaftspotential?. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2006; 117 (11) 2341-2356
- 35 Waldert S et al. 2009. A review on directional information in neural signals for brain-machine interfaces. Journal of Physiology, Paris 2009; 103 (3–5) 244-254
- 36 Wolpaw JR et al. Brain-computer interfaces for communication and control. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2002; 113 (6) 767-791
- 37 Wriessnegger SC, Hackhofer D, Müller-Putz GR. Classification of unconscious like/dislike decisions: First results towards a novel application for BCI technology. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society 2015; 2331-2334