RSS-Feed abonnieren

DOI: 10.1055/s-0042-1743555
The Role of Transforming Growth Factor Beta and Smad Receptors in Determining Prognosis in High-Grade Primary Brain Tumors: Glioblastoma Multiforme
O papel do fator de crescimento transformador beta e receptores smad na determinação do prognóstico em tumores cerebrais primários de alto grau: glioblastoma multiforme
Abstract
Introduction High-grade primary brain tumors cause serious morbidity and mortality. This study aimed to investigate the role of transforming growth factor beta (TGF-β) and suppressor of mothers against decapentaplegic (Smad) receptors in high-grade primary brain tumors.
Material and Method Thirteen patients with a pathological diagnosis of glioblastoma multiforme were included in the study. Pathological preparations of each patient were analyzed retrospectively in histochemistry and immunohistochemistry laboratories. Transforming growth factor beta 1, TGF-β2, TGF-β3, Smad 1/2/3, Smad 6, and Smad 7 stainings were evaluated, and the immunoreactivity densities were examined.
Result We found out an increase in the expression of TGF-β1 and TGF-β3 protein. Regarding the inhibitin receptors, Smad 6 showed much more expression than Smad 7. Thus, we found that Smad 6 has a protective effect and role in the tissue. Immunhistochemically, TGF-β family stains, which are activated by types I-and -II receptors, and the stainless staining of the Smad family might also be showing that the TGF-β family is taking action with a secondary pathway other than the Smad family.
Conclusion In addition to Smad family receptors, Shc-GBR2, SARA, and Ras-Erk1/2 receptors should be investigated in future research. After that, the prognosis, diagnosis, and patient-based chemotherapy strategies for the treatment of glioblastoma multiforme may take a more prominent role.
Resumo
Objetivo Tumores cerebrais primários de alto grau causam morbidade e mortalidade graves. Este estudo teve como objetivo investigar o papel dos receptores fato de crescimento transformante beta (TGF-β) e mães contra homólogo decapentaplégico (Smad, na sigla em inglês) em tumores cerebrais primários de alto grau.
Métodos Treze pacientes com diagnóstico patológico de glioblastoma multiforme foram incluídos no estudo. As preparações patológicas de cada paciente foram analisadas retrospectivamente em laboratórios de histoquímica e imunohistoquímica. As colorações de TGF-β1, TGF-β2, TGF-β3, Smad 1/2/3, Smad 6, e Smad 7 foram avaliadas, e as densidades de imunorreatividade foram examinadas.
Resultados Encontramos aumento na expressão das proteínas TGF-β1 e TGF-β3. Em relação aos receptores de inibitina, o Smad 6 mostrou muito mais expressão do que o Smad 7. Assim, concluímos que o Smad 6 tem efeito e função protetores no tecido. As colorações imunohistoquímicas da família TGF-β, que são ativadas pelos receptores do tipo I e do tipo II, e as colorações menos da família Smad também podem estar mostrando que a família TGF-β está agindo com outra via secundária que não a família Smad.
Conclusão Assim como os estudos na família Smad, receptores como Shc-GBR2, SARA, Ras-Erk1/2 devem ser investigados em pesquisas futuras. Posteriormente, o prognóstico, o diagnóstico, e as estratégias de quimioterapia baseadas no paciente podem assumir um lugar mais priminente no futuro, no glioblastoma multiforme.
Keywords
glioblastoma multiforme - transforming growth factor beta - smad proteins - endothelial-mesenchymal transitionPalavras-chave
glioblastoma multiforme - fato de crescimento transformante beta - proteínas smad - transição endotelial-mesenquimalPublikationsverlauf
Eingereicht: 06. August 2021
Angenommen: 13. Oktober 2021
Artikel online veröffentlicht:
29. November 2022
© 2022. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA. TGF-β as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol 2013; 85 (04) 478-485 DOI: 10.1016/j.bcp.2012.11.005.
- 2 Yan YR, Xie Q, Li F. et al. Epithelial-to-mesenchymal transition is involved in BCNU resistance in human glioma cells. Neuropathology 2014; 34 (02) 128-134 DOI: 10.1111/neup.12062.
- 3 Massagué J. TGFbeta in Cancer. Cell 2008; 134 (02) 215-230 DOI: 10.1016/j.cell.2008.07.001.
- 4 Gout S, Huot J. Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron 2008; 1 (01) 69-83 DOI: 10.1007/s12307-008-0007-2.
- 5 Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000; 182 (03) 311-322 DOI: 10.1002/(SICI)1097-4652(200003)182:3<311:AID-JCP1>3.0.CO;2-9.
- 6 Louis DN, Holland EC, Cairncross JG. Glioma classification: a molecular reappraisal. Am J Pathol 2001; 159 (03) 779-786 DOI: 10.1016/S0002-9440(10)61750-6.
- 7 Barutcuoglu M, Umur AS, Vatansever HS. et al. TGF-βs and Smads activities at the site of failed neural tube in the human embryos. Turk Neurosurg 2013; 23 (06) 693-699 DOI: 10.5137/1019-5149.JTN.9428-13.0.
- 8 Platten M, Wick W, Weller M. Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 2001; 52 (04) 401-410 DOI: 10.1002/1097-0029(20010215)52:4<401:AID-JEMT1025>3.0.CO;2-C.
- 9 Rich JN. The role of transforming growth factor-beta in primary brain tumors. Front Biosci 2003; 8: e245-e260 DOI: 10.2741/992.
- 10 Sasaki A, Naganuma H, Satoh E. et al. Secretion of transforming growth factor-beta 1 and -beta 2 by malignant glioma cells. Neurol Med Chir (Tokyo) 1995; 35 (07) 423-430 DOI: 10.2176/nmc.35.423.
- 11 Bruce JN, Kennedy B, Shepard RC. Glioblastoma multiforme. Med Oncol 2009;5(08):
- 12 Gasparini G, Boracchi P, Verderio P, Bevilacqua P. Cell kinetics in human breast cancer: comparison between the prognostic value of the cytofluorimetric S-phase fraction and that of the antibodies to Ki-67 and PCNA antigens detected by immunocytochemistry. Int J Cancer 1994; 57 (06) 822-829 DOI: 10.1002/ijc.2910570610.
- 13 Vielh P, Chevillard S, Mosseri V, Donatini B, Magdelenat H. Ki67 index and S-phase fraction in human breast carcinomas. Comparison and correlations with prognostic factors. Am J Clin Pathol 1990; 94 (06) 681-686 DOI: 10.1093/ajcp/94.6.681.
- 14 Burcombe R, Wilson GD, Dowsett M. et al. Evaluation of Ki-67 proliferation and apoptotic index before, during and after neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Res 2006; 8 (03) 1-10
- 15 Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003; 15 (06) 740-746 DOI: 10.1016/j.ceb.2003.10.006.