CC BY 4.0 · Synlett
DOI: 10.1055/s-0042-1751569
account
Japan/Netherlands Gratama Workshop

Bioorthogonal Chemistry at Radboud University: Past, Present and Future

,
,
Kevin Neumann
We are grateful for continuing financial support including from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the European Research Council (ERC), and the Dutch Society for Immunology (NVVI). K.B. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 802940) and the NWO gravitation program ‘Institute for Chemical Immunology’ (NWO-024.002.009).


Abstract

Over the past two decades, bioorthogonal chemistry has profoundly impacted various chemistry-related fields, including chemical biology and drug delivery. This transformative progress stems from collaborative efforts involving chemists and biologists, underscoring the importance of interdisciplinary research. In this Account, we present the developments in bioorthogonal chemistry within our Institute for Molecules and Materials at Radboud University. The chemistry disclosed here spans from strained alkynes and alkenes to drug release and bioconjugation strategies, mirroring the extensive scope provided by bioorthogonal chemistry. By reflecting on the chemistry originating at Radboud University, this Account emphasizes that teamwork is essential for driving significant progress in bioorthogonal chemistry.

1 Introduction

2 Providing BCN as a Robust Bioorthogonal Tool for Chemical Biology and Beyond

3 Towards Readily Available Click-to-Release trans-Cyclooctenes

4 Giving Molecules Guidance

5 Next Generation of Bioconjugation Strategies: Dynamic Click Chemistry

6 Conclusions



Publication History

Received: 21 January 2024

Accepted after revision: 14 February 2024

Article published online:
14 March 2024

© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hang HC, Yu C, Kato DL, Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 14846
    • 1b Bertozzi CR. Acc. Chem. Res. 2011; 44: 651
    • 1c Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 38: 6974
    • 2a Patterson DM, Prescher JA. Curr. Opin. Chem. Biol. 2015; 28: 141
    • 2b Devaraj NK. ACS Cent. Sci. 2018; 8: 952
    • 2c Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
  • 3 Debets MF, van Berkel SS, Dommerholt J, Dirks AJ, Rutjes FP. J. T, van Delft FL. Acc. Chem. Res. 2011; 9: 805
    • 4a Dommerholt J, Schmidt S, Rinske T, Hendriks LJ. A, Rutjes FP. J. T, van Hest JC. M, Lefeber DJ, Friedl P, van Delft FL. Angew. Chem. Int. Ed. 2010; 49: 9422
    • 4b Debets MF, van der Doelen CW J, Rutjes FP. J. T, van Delft FL. ChemBioChem 2010; 9: 1168
  • 5 Eising S, Lelivelt F, Bonger KM. Angew. Chem. Int. Ed. 2016; 55: 12243
  • 6 Ignacio BJ, Dijkstra J, Mora N, Slot EF. J, van Weijsten MJ, Storkebaum E, Vermeulen M, Bonger KM. Nat. Commun. 2022; 14: 3367
    • 7a Büll C, Heise T, van Hilten N, Pijnenborg JF. A, Bloemendal VR. L. J, Gerrits L, Kers-Rebel ED, Ritschel T, den Brok MH, Adema GJ, Boltje TJ. Angew. Chem. Int. Ed. 2017; 12: 3309
    • 7b Büll C, Heise T, Beurskens DM. H, Riemersma M, Ashikov A, Rutjes FP. J. T, van Kuppevelt TH, Lefeber DJ, den Brok MH, Adema GJ, Boltje TJ. Chem. Biol. 2015; 10: 2353
  • 8 Velema WA. Chem. Commun. 2023; 59: 6148
    • 9a Neumann K, Gambardella A, Bradley M. ChemBioChem 2019; 7: 872
    • 9b Neumann K, Gambardella A, Lilienkampf A, Bradley M. Chem. Sci. 2018; 9: 7198
    • 9c Remmers RC. P. A, Neumann K. Biomater. Sci. 2023; 11: 1607
  • 10 Baskin JM, Prescher JA, Laughlin ST, Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 16793
  • 11 Blomquist AT, Liu LH. J. Am. Chem. Soc. 1953; 9: 2153
  • 12 Prelog V, Schenker K, Künig W. Helv. Chim. Acta 1953; 59: 471
  • 13 Ning X, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF, Wolfert MA, Boons G.-J, van Delft FL. Angew. Chem. Int. Ed. 2010; 17: 3065
  • 14 Codelli JA, Baskin JM, Agard NJ, Bertozzi CR. J. Am. Chem. Soc. 2008; 34: 11486
  • 15 Debets MF, van Berkel SS, Schoffelen S, Rutjes FP. J. T, van Hest JC. M, van Delft FL. Chem. Commun. 2010; 46: 97
  • 16 van Berkel SS, Dirks AJ, Debets MF, van Delft FL, Cornelissen JJ. L. M, Nolte RJ. M, Rutjes FP. J. T. ChemBioChem 2007; 8: 1504
    • 17a van Dongen SF, Verdurmen WP, Peters RJ, Nolte RJ. M, Brock R, van Hest JC. M. Angew. Chem. Int. Ed. 2010; 49: 7213
    • 17b Krause A, Kirschning A, Dräger G. Org. Biomol. Chem. 2012; 10: 5547
    • 17c Jirawutthiwongchai J, Krause A, Dräger G, Chirachanchai S. ACS Macro Lett. 2013; 2: 177
  • 18 van Oers MC. M, Rutjes FP. J. T, van Hest JC. M. J. Am. Chem. Soc. 2013; 44: 16308
  • 19 Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 41: 13518
  • 20 Darko A, Wallace S, Dmitrenko O, Machovina MM, Mehl M, Ryan A, Chin JW, Fox JM. Chem. Sci. 2014; 5: 3770
  • 21 Mitry MM. A, Greco F, Osborn HM. I. Chem. Eur. J. 2023; 20: e202203942
    • 22a Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS. Angew. Chem. Int. Ed. 2013; 52: 14112
    • 22b Versteegen RM, ten Hoeve W, Rossin R, de Geus MA. R, Janssen HM, Robillard MS. Angew. Chem. Int. Ed. 2018; 33: 10494
    • 23a Sondag D, Maartense L, de Jong H, de Kleijne FF. J, Bonger KM, Löwik DW. P. M, Boltje TJ, Dommerholt J, White PB, Blanco-Ania D, Rutjes FP. J. T. Chem. Eur. J. 2023; 6: e202203375
    • 23b Kuba W, Sohr B, Keppel P, Svatunek D, Humhal V, Stöger B, Goldeck M, Carlson JC. T, Mikula H. Chem. Eur. J. 2022; 28: e202203069
    • 23c Liu B, ten Hoeve W, Versteegen RM, Rossin R, Kleijn LH. J, Robillard MS. Chem. Eur. J. 2023; 29: e202300755
  • 24 Blanco-Ania D, Maartense L, Rutjes FP. J. T. ChemPhotoChem 2018; 10: 898
  • 25 Royzen M, Yap GP. A, Fox JM. J. Am. Chem. Soc. 2008; 12: 3760
  • 26 Fang Y, Judkins JC, Boyd SJ, am Ende CW, Rohlfing K, Huang Z, Xie Y, Johnson DS, Fox JM. Tetrahedron 2019; 75: 4307
  • 27 Eising S, Xin B.-T, Kleinpenning F, Heming JJ. A, Florea BI, Overkleeft HS, Bonger KM. ChemBioChem 2018; 15: 1648
  • 28 Eising S, Engwerda AH. J, Riedijk X, Bickelhaupt MF, Bonger KM. Bioconjugate Chem. 2018; 29: 3054
  • 29 Lelieveldt L, Eising S, Weijen A, Bonger KM. Org. Biomol. Chem. 2019; 17: 8816
    • 30a Wu H, Alexander SC, Jin S, Devaraj NK. J. Am.Chem. Soc. 2016; 138: 11429
    • 30b Jiménez-Moreno E, Guo Z, Oliveira BL, Albuquerque IS, Kitowski A, Guerreiro A, Boutureira O, Rodrigues T, Jiménez-Osés O, Bernardes GJ. L. Angew. Chem. Int. Ed. 2017; 56: 243
  • 31 Eising S, van der Linden NG. A, Kleinpenning F, Bonger KM. Bioconjugate Chem. 2018; 29: 982
  • 32 Ravasco JM. J. M, Faustino H, Trindade A, Gois PM. P. Chem. Eur. J. 2019; 43
  • 33 Gavriel K, van Doeselaar DC. A, Geers DW. T, Neumann K. RSC Chem. Biol. 2023; 4: 685

    • For a selection of publications, see:
    • 34a Santos T, Rivero DS, Pérez-Pérez Y, Martín-Encinas E, Pasán J, Daranas AH, Carrillo R. Angew. Chem. Int. Ed. 2021; 60: 18783
    • 34b Rivero DS, Paiva-Feener RA, Santos T, Martín-Encinas E, Carrillo R. Macromolecules 2021; 54: 10428
    • 34c Brown SP, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 4034
  • 35 Bickem L, Gavriel K, Neumann K. Eur. J. Org. Chem. 2024; 27: e202301117
  • 36 Tallon AM, Xu Y, West GM, am Ende CW, Fox JM. J. Am. Chem. Soc. 2023; 29: 16069
  • 37 Geers DW. T, Gavriel K, Neumann K. J. Pept. Sci. 2024; 30: e3548