Semin Thromb Hemost 2022; 48(08): 880-888
DOI: 10.1055/s-0042-1756187
Review Article

One Hundred Years of Congenital Fibrinogen Disorders

Alessandro Casini
1   Division of Angiology and Hemostasis, University Hospitals of Geneva, Geneva, Switzerland
2   Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
Philippe de Moerloose
2   Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
Marguerite Neerman-Arbez
2   Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
3   Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
› Author Affiliations


Congenital fibrinogen disorders encompass a broad range of fibrinogen defects characterized by a wide molecular and clinical spectrum. From the first clinical description of afibrinogenemia in 1920, many major achievements have contributed to a better understanding of these complex disorders. The finding of causative mutations in all three fibrinogen genes has contributed to reveal the molecular mechanisms involved in biosynthesis of the fibrinogen molecule and to clarify the basic processes of fibrin polymerization and fibrinolysis. The compilation of abundant cases with detailed genetic, biological, and clinical features has enabled the classification of congenital fibrinogen disorders into several types and subtypes. Thus, the recent classification of congenital fibrinogen disorder is based not only on the clottable and antigenic fibrinogen levels but also on the patient's clinical phenotype and genotype. Fibrinogen supplementation is the cornerstone of bleeding management in fibrinogen disorders. Since the discovery of blood fractionation, the method of production of fibrinogen concentrate has been progressively modified to significantly improve purity and safety. Nevertheless, the availability of such products is still limited to a few countries and the optimal threshold of fibrinogen to target is still not established. In this review, we describe the major advances that have characterized 100 years of congenital fibrinogen disorders, focusing on afibrinogenemia and dysfibrinogenemia.

Publication History

Article published online:
02 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

  • References

  • 1 Owen CA. A History of Blood Coagulation. In: Nichols WL, Bowie EJW, Rochester MN. eds. Mayo Foundation for Medical Education and Research ed. 2001
  • 2 Costa-Filho R, Hochleitner G, Wendt M, Teruya A, Spahn DR. Over 50 years of fibrinogen concentrate. Clin Appl Thromb Hemost 2016; 22 (02) 109-114
  • 3 Casini A, de Moerloose P, Neerman-Arbez M. Clinical features and management of congenital fibrinogen deficiencies. Semin Thromb Hemost 2016; 42 (04) 366-374
  • 4 Neerman-Arbez M, de Moerloose P, Casini A. Laboratory and genetic investigation of mutations accounting for congenital fibrinogen disorders. Semin Thromb Hemost 2016; 42 (04) 356-365
  • 5 Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125 (13) 2052-2061
  • 6 Casini A, Neerman-Arbez M, de Moerloose P. Heterogeneity of congenital afibrinogenemia, from epidemiology to clinical consequences and management. Blood Rev 2021; 48: 100793
  • 7 Mosesson MW, DiOrio JP, Müller MF. et al. Studies on the ultrastructure of fibrin lacking fibrinopeptide B (beta-fibrin). Blood 1987; 69 (04) 1073-1081
  • 8 Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood 2013; 121 (10) 1712-1719
  • 9 Weisel JW. Why dysfibrinogenaemias still matter. Thromb Haemost 2009; 102 (03) 426-427
  • 10 Rabe F, Saloman E. Ueber-faserstoffmangel im blute bei einem falle von hemophilie. Arch Intern Med (Chic) 1920; (95) 2-14
  • 11 De Silva CC, Thanabalasundaram RS. Congenital afibrinogenemia. BMJ 1951; 2 (4723): 86-88
  • 12 Inamoto Y, Terao T. First report of case of congenital afibrinogenemia with successful delivery. Am J Obstet Gynecol 1985; 153 (07) 803-804
  • 13 Dickenman RC, Brown HJ, Hiratzka T, Vetne G. Thrombotic thrombocytopenic purpura with associated afibrinogenemia; report of case. J Mich State Med Soc 1955; 54 (12) 1421-1425
  • 14 Gallet S, Tran Minh V, Louis D, Cotton JB, Berthier JC, Hartemann E. Massive hemoperitoneum caused by rupture of the spleen, a complication of congenital afibrinogenemia. Conservative treatment. Pediatrie 1985; 40 (05) 385-391
  • 15 Bridey F, Négrier C, Duval C, Ariëns R, de Moerloose P, Casini A. Impaired factor XIII activation in patients with congenital afibrinogenemia. Haematologica 2019; 104 (03) e111-e113
  • 16 Colvin RB, Mosesson MW, Dvorak HF. Delayed-type hypersensitivity skin reactions in congenital afibrinogenemia lack fibrin deposition and induration. J Clin Invest 1979; 63 (06) 1302-1306
  • 17 Henderson J, Donaldson G, Scarborough H. Congenital afibrinogenemia report of a case with a review of the literature. QJM 1945; 14: 101-111
  • 18 Lagier R, Bouvier CA, Van Strijthem N. Skeletal changes in congenital fibrinogen abnormalities. Skeletal Radiol 1980; 5 (04) 233-239
  • 19 Imperato C, Dettori AG. Congenital hypofibrinogenemia with fibrinoasthenia. Helv Paediatr Acta 1958; 13 (04) 380-399
  • 20 Ménaché D. Dysfibrinogénémie constitutionnelle et familiale. Paper presented at: Proc 9th Congr Europ Soc Haemat Lisbon. New York: S. Karger Basel; 1963: 1255-1259
  • 21 Beck EA, Charache P, Jackson DP. A new inherited coagulation disorder caused by an abnormal fibrinogen (‘fibrinogen Baltimore’). Nature 1965; 208 (5006): 143-145
  • 22 Forman WB, Ratnoff OD, Boyer MH. An inherited qualitative abnormality in plasma fibrinogen: fibrinogen Cleveland. J Lab Clin Med 1968; 72 (03) 455-472
  • 23 Mammen EF, Prasad AS. Familial dysfibrinogenemia—“Detroit fibrinogen”. Verh Dtsch Ges Inn Med 1968; 74: 140-144
  • 24 Blombäck M, Blombäck B, Mammen EF, Prasad AS. Fibrinogen Detroit—a molecular defect in the N-terminal disulphide knot of human fibrinogen?. Nature 1968; 218 (5137): 134-137
  • 25 Soria J, Soria C, Samama M, Poirot E, Kling C. Fibrinogen Troyes—fibrinogen Metz. Two new cases of congenital dysfibrinogenemia. Thromb Diath Haemorrh 1972; 27 (03) 619-633
  • 26 Al-Mondhiry H, Bilezikian SB, Nossel HL. Fibrinogen "“New York”—an abnormal fibrinogen associated with thromboembolism: functional evaluation. Blood 1975; 45 (05) 607-619
  • 27 Denninger MH, Finlayson JS, Reamer LA, Parquet-Gernez A, Goudemand M, Menache D. Congenital dysfibrinogenemia: fibrinogen Lille. Thromb Res 1978; 13 (03) 453-466
  • 28 Mosesson MW, Amrani DL, Ménaché D. Studies on the structural abnormality of fibrinogen Paris I. J Clin Invest 1976; 57 (03) 782-790
  • 29 Mosesson MW, Feldmann G, Ménaché D. Electron microscopy of fibrin Paris I. Blood 1980; 56 (01) 80-83
  • 30 Jandrot-Perrus M, Mosesson MW, Denninger MH, Ménaché D. Studies of platelet fibrinogen from a subject with a congenital plasma fibrinogen abnormality (fibrinogen Paris I). Blood 1979; 54 (05) 1109-1116
  • 31 Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13 (06) 909-919
  • 32 Ebert RF. Index of Variant Human Fibrinogens. Boca Raton, Ann Arbor, Boston: CRC Press ed.; 1994
  • 33 Mosesson MW. Hereditary Fibrinogen Abnormalities. In: Kaushansky K, Lichtman M, Beutler E. et al. eds. Williams Hematology. 7th ed.. New York, NY: McGraw-Hil; 2005
  • 34 Neerman-Arbez M, de Moerloose P. Hereditary fibrinogen abnormalities. In: Kaushansky K, Lichtman M, Beutler E. et al, eds., Williams Hematology. 8th ed.. New York, NY: McGraw-Hil; 2010: 1-33
  • 35 Hanss M, Biot F. A database for human fibrinogen variants. Ann N Y Acad Sci 2001; 936: 89-90
  • 36 Pauling L, Itano HA. et al. Sickle cell anemia a molecular disease. Science 1949; 110 (2865): 543-548
  • 37 Blombäck B. Travels with fibrinogen. J Thromb Haemost 2006; 4 (08) 1653-1660
  • 38 Doolittle RF. The structure and evolution of vertebrate fibrinogen. Ann N Y Acad Sci 1983; 408: 13-27
  • 39 Kant JA, Lord ST, Crabtree GR. Partial mRNA sequences for human A alpha, B beta, and gamma fibrinogen chains: evolutionary and functional implications. Proc Natl Acad Sci U S A 1983; 80 (13) 3953-3957
  • 40 Neerman-Arbez M, Honsberger A, Antonarakis SE, Morris MA. Deletion of the fibrinogen [correction of FibroGen] alpha-chain gene (FGA) causes congenital afibrinogenemia. J Clin Invest 1999; 103 (02) 215-218
  • 41 Ni H, Denis CV, Subbarao S. et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106 (03) 385-392
  • 42 Casini A, de Moerloose P. How I treat dysfibrinogenemia. Blood 2021; 138 (21) 2021-2030
  • 43 Wada Y, Lord ST. A correlation between thrombotic disease and a specific fibrinogen abnormality (A alpha 554 Arg–>Cys) in two unrelated kindred, Dusart and Chapel Hill III. Blood 1994; 84 (11) 3709-3714
  • 44 Soria J, Soria C, Caen P. A new type of congenital dysfibrinogenaemia with defective fibrin lysis–Dusard syndrome: possible relation to thrombosis. Br J Haematol 1983; 53 (04) 575-586
  • 45 Koopman J, Haverkate F, Grimbergen J. et al. Molecular basis for fibrinogen Dusart (A alpha 554 Arg–>Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest 1993; 91 (04) 1637-1643
  • 46 Collet JP, Soria J, Mirshahi M. et al. Dusart syndrome: a new concept of the relationship between fibrin clot architecture and fibrin clot degradability: hypofibrinolysis related to an abnormal clot structure. Blood 1993; 82 (08) 2462-2469
  • 47 Collet JP, Woodhead JL, Soria J. et al. Fibrinogen Dusart: electron microscopy of molecules, fibers and clots, and viscoelastic properties of clots. Biophys J 1996; 70 (01) 500-510
  • 48 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost 1995; 73 (01) 151-161
  • 49 Lak M, Keihani M, Elahi F, Peyvandi F, Mannucci PM. Bleeding and thrombosis in 55 patients with inherited afibrinogenaemia. Br J Haematol 1999; 107 (01) 204-206
  • 50 Peyvandi F, Haertel S, Knaub S, Mannucci PM. Incidence of bleeding symptoms in 100 patients with inherited afibrinogenemia or hypofibrinogenemia. J Thromb Haemost 2006; 4 (07) 1634-1637
  • 51 Peyvandi F. Epidemiology and treatment of congenital fibrinogen deficiency. Thromb Res 2012; 130 (Suppl. 02) S7-S11
  • 52 Casini A, Undas A, Palla R, Thachil J, de Moerloose P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (09) 1887-1890
  • 53 de Moerloose P, Boehlen F, Neerman-Arbez M. Fibrinogen and the risk of thrombosis. Semin Thromb Hemost 2010; 36 (01) 7-17
  • 54 De Marco L, Girolami A, Zimmerman TS, Ruggeri ZM. von Willebrand factor interaction with the glycoprotein IIb/IIa complex. Its role in platelet function as demonstrated in patients with congenital afibrinogenemia. J Clin Invest 1986; 77 (04) 1272-1277
  • 55 Korte W, Feldges A. Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible by fibrinogen substitution. Clin Investig 1994; 72 (05) 396-398
  • 56 Hemker HC, Giesen P, Al Dieri R. et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003; 33 (01) 4-15
  • 57 de Bosch NB, Mosesson MW, Ruiz-Sáez A, Echenagucia M, Rodriguez-Lemoin A. Inhibition of thrombin generation in plasma by fibrin formation (Antithrombin I). Thromb Haemost 2002; 88 (02) 253-258
  • 58 Mosesson MW, Antithrombin I. Antithrombin I. Inhibition of thrombin generation in plasma by fibrin formation. Thromb Haemost 2003; 89 (01) 9-12
  • 59 Dupuy E, Soria C, Molho P. et al. Embolized ischemic lesions of toes in an afibrinogenemic patient: possible relevance to in vivo circulating thrombin. Thromb Res 2001; 102 (03) 211-219
  • 60 Casini A, von Mackensen S, Santoro C. et al; QualyAfib Study Group. Clinical phenotype, fibrinogen supplementation, and health-related quality of life in patients with afibrinogenemia. Blood 2021; 137 (22) 3127-3136
  • 61 Casini A, Blondon M, Lebreton A. et al. Natural history of patients with congenital dysfibrinogenemia. Blood 2015; 125 (03) 553-561
  • 62 Zhou J, Ding Q, Chen Y. et al. Clinical features and molecular basis of 102 Chinese patients with congenital dysfibrinogenemia. Blood Cells Mol Dis 2015; 55 (04) 308-315
  • 63 Cohn EJ, Oncley JL, Strong LE, Hughes WL, Armstrong SH. Chemical, clinical, and immunological studies on the products of human plasma fractionation. I. The characterization of the protein fractions of human plasma. J Clin Invest 1944; 23 (04) 417-432
  • 64 Cohn EJ. Blood proteins and their therapeutic value. Science 1945; 101 (2612): 51-56
  • 65 Nitschmann H, Kistler P, Joss A. Dried fraction I for clinical use from smallest plasma pools, sterile without filtration. Vox Sang 1957; 2 (02) 100-103
  • 66 Stampfli K. The therapeutic use of fibrinogen (fraction I of Cohn) in fibrinogen deficiency diseases and thrombocytopenias. Ther Umsch 1957; 14 (09) 259-263
  • 67 Casini A, de Moerloose P. Fibrinogen concentrates in hereditary fibrinogen disorders: past, present and future. Haemophilia 2020; 26 (01) 25-32
  • 68 Kreuz W, Meili E, Peter-Salonen K. et al. Pharmacokinetic properties of a pasteurised fibrinogen concentrate. Transfus Apheresis Sci 2005; 32 (03) 239-246
  • 69 Kreuz W, Meili E, Peter-Salonen K. et al. Efficacy and tolerability of a pasteurised human fibrinogen concentrate in patients with congenital fibrinogen deficiency. Transfus Apheresis Sci 2005; 32 (03) 247-253
  • 70 Manco-Johnson MJ, Dimichele D, Castaman G. et al; FIBRINOGEN CONCENTRATE STUDY GROUP. Pharmacokinetics and safety of fibrinogen concentrate. J Thromb Haemost 2009; 7 (12) 2064-2069
  • 71 Négrier C, Rothschild C, Goudemand J. et al. Pharmacokinetics and pharmacodynamics of a new highly secured fibrinogen concentrate. J Thromb Haemost 2008; 6 (09) 1494-1499
  • 72 Bornikova L, Peyvandi F, Allen G, Bernstein J, Manco-Johnson MJ. Fibrinogen replacement therapy for congenital fibrinogen deficiency. J Thromb Haemost 2011; 9 (09) 1687-1704
  • 73 De Vries A, Rosenberg T, Kochwa S, Boss JH. Precipitating antifibrinogen antibody appearing after fibrinogen infusions in a patient with congenital afibrinogenemia. Am J Med 1961; 30: 486-494
  • 74 Négrier C, Rothschild C, Borg JY. et al. Post-authorization safety study of Clottafact®, a triply secured fibrinogen concentrate in congenital afibrinogenemia. A prospective observational study. Vox Sang 2016; 111 (04) 383-390
  • 75 Solomon C, Gröner A, Ye J, Pendrak I. Safety of fibrinogen concentrate: analysis of more than 27 years of pharmacovigilance data. Thromb Haemost 2015; 113 (04) 759-771
  • 76 Lasky J, Teitel J, Wang M, Dalton D, Schmidt DS, Brainsky A. Fibrinogen concentrate for bleeding in patients with congenital fibrinogen deficiency: observational study of efficacy and safety for prophylaxis and treatment. Res Pract Thromb Haemost 2020; 4 (08) 1313-1323
  • 77 Casini A, Duval C, Pan X, Tintillier V, Biron-Andreani C, Ariëns RAS. Fibrin clot structure in patients with congenital dysfibrinogenaemia. Thromb Res 2016; 137: 189-195
  • 78 Feller T, Connell SDA, Ariëns RAS. Why fibrin biomechanical properties matter for hemostasis and thrombosis. J Thromb Haemost 2022; 20 (01) 6-16
  • 79 Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood 2017; 130 (16) 1795-1799
  • 80 Ajjan R, Lim BC, Standeven KF. et al. Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood 2008; 111 (02) 643-650
  • 81 Ariëns RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000; 96 (03) 988-995
  • 82 Liu CY, Koehn JA, Morgan FJ. Characterization of fibrinogen New York 1. A dysfunctional fibrinogen with a deletion of B beta(9-72) corresponding exactly to exon 2 of the gene. J Biol Chem 1985; 260 (07) 4390-4396
  • 83 Koopman J, Haverkate F, Grimbergen J. et al. Abnormal fibrinogens IJmuiden (B beta Arg14—-Cys) and Nijmegen (B beta Arg44—-Cys) form disulfide-linked fibrinogen-albumin complexes. Proc Natl Acad Sci U S A 1992; 89 (08) 3478-3482
  • 84 Koopman J, Haverkate F, Lord ST, Grimbergen J, Mannucci PM. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. Homozygous substitution of B beta 68 Ala—-Thr. J Clin Invest 1992; 90 (01) 238-244
  • 85 Bentolila S, Samama MM, Conard J, Horellou MH, Ffrench P. Association of dysfibrinogenemia and thrombosis. Apropos of a family (Fibrinogen Melun) and review of the literature. Ann Med Interne (Paris) 1995; 146 (08) 575-580
  • 86 Marchi R, Lundberg U, Grimbergen J. et al. Fibrinogen Caracas V, an abnormal fibrinogen with an Aalpha 532 Ser–>Cys substitution associated with thrombosis. Thromb Haemost 2000; 84 (02) 263-270
  • 87 Santacroce R, Cappucci F, Pisanelli D. et al. Inherited abnormalities of fibrinogen: 10-year clinical experience of an Italian group. Blood Coagul Fibrinolysis 2006; 17 (04) 235-240
  • 88 Miesbach W, Scharrer I, Henschen A, Neerman-Arbez M, Spitzer S, Galanakis D. Inherited dysfibrinogenemia: clinical phenotypes associated with five different fibrinogen structure defects. Blood Coagul Fibrinolysis 2010; 21 (01) 35-40
  • 89 Shapiro SE, Phillips E, Manning RA. et al. Clinical phenotype, laboratory features and genotype of 35 patients with heritable dysfibrinogenaemia. Br J Haematol 2013; 160 (02) 220-227
  • 90 Smith N, Bornikova L, Noetzli L. et al. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res Pract Thromb Haemost 2018; 2 (04) 800-811
  • 91 Castaman G, Giacomelli SH, Biasoli C, Contino L, Radossi P. Risk of bleeding and thrombosis in inherited qualitative fibrinogen disorders. Eur J Haematol 2019; 103 (04) 379-384
  • 92 Wypasek E, Klukowska A, Zdziarska J. et al. Genetic and clinical characterization of congenital fibrinogen disorders in Polish patients: identification of three novel fibrinogen gamma chain mutations. Thromb Res 2019; 182: 133-140
  • 93 Simurda T, Zolkova J, Kolkova Z. et al. Comparison of clinical phenotype with genetic and laboratory results in 31 patients with congenital dysfibrinogenemia in northern Slovakia. Int J Hematol 2020; 111 (06) 795-802
  • 94 Zhou P, Yu M, Peng Y, Ma P, Wan L. Identification and characterization of novel mutations in Chinese patients with congenital fibrinogen disorders. Blood Cells Mol Dis 2021; 86: 102489
  • 95 Lissitchkov T, Madan B, Djambas Khayat C. et al. Efficacy and safety of a new human fibrinogen concentrate in patients with congenital fibrinogen deficiency: an interim analysis of a Phase III trial. Transfusion 2018; 58 (02) 413-422
  • 96 Ross C, Rangarajan S, Karimi M. et al. Pharmacokinetics, clot strength and safety of a new fibrinogen concentrate: randomized comparison with active control in congenital fibrinogen deficiency. J Thromb Haemost 2018; 16 (02) 253-261
  • 97 Djambas Khayat C, El Khorassani M, Lambert T. et al. Clinical pharmacology, efficacy and safety study of a triple-secured fibrinogen concentrate in adults and adolescent patients with congenital fibrinogen deficiency. J Thromb Haemost 2019; 17 (04) 635-644
  • 98 Djambas Khayat C, El Khorassani M, Aytaç S. et al. Pharmacology, efficacy and safety of a triple-secured fibrinogen concentrate in children less than or equal to 12 years with afibrinogenaemia. Thromb Haemost 2020; 120 (06) 957-967
  • 99 Lissitchkov T, Madan B, Djambas Khayat C. et al. Fibrinogen concentrate for treatment of bleeding and surgical prophylaxis in congenital fibrinogen deficiency patients. J Thromb Haemost 2020; 18 (04) 815-824
  • 100 Djambas Khayat C, Lohade S, D'Souza F. et al. Efficacy and safety of fibrinogen concentrate for on-demand treatment of bleeding and surgical prophylaxis in paediatric patients with congenital fibrinogen deficiency. Haemophilia 2021; 27 (02) 283-292
  • 101 Ross CR, Subramanian S, Navarro-Puerto J. et al. Pharmacokinetics, surrogate efficacy and safety evaluations of a new human plasma-derived fibrinogen concentrate (FIB Grifols) in adult patients with congenital afibrinogenemia. Thromb Res 2021; 199: 110-118