Aktuelle Neurologie 2017; 44(08): 549-554
DOI: 10.1055/s-0043-109095
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Technische Entwicklungen zur Rehabilitation der Mobilität

Technical Developments for Rehabilitation of Mobility
Christian Dohle
1   MEDIAN Klinik Berlin-Kladow, Berlin
2   Centrum für Schlaganfallforschung Berlin, Charité – Universitätsmedizin Berlin
,
Friedemann Müller
3   Schön Klinik Bad Aibling, Bad Aibling
,
Klaus Martin Stephan
4   SRH Gesundheitszentrum Bad Wimpfen, Bad Wimpfen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Oktober 2017 (online)

Zusammenfassung

In der Rehabilitation der Mobilität nach Schlaganfall sind technisch unterstützende Verfahren seit vielen Jahren gut etabliert und evaluiert. Belastbare Wirksamkeitsnachweise liegen vor für stationäre Endeffektorgeräte und Exoskeletts sowie für Laufbandtraining mit und ohne Gewichtsentlastung. Neue technische Entwicklungen ermöglichen die frühe Vertikalisierung im funktionellen Kontext bereits auf der (Intensiv-)Station. Zudem existieren mittlerweile verschiedene mobile Exoskelette, deren dezidierte Wirksamkeit allerdings noch belegt werden muss. Im klinischen Einsatz müssen neben einer anzustrebenden hohen Zahl an Repetitionen auch motivationale Aspekte stärker betont werden. Hier bieten sich Techniken der virtuellen Realität an. Für den praktischen Einsatz im klinischen Alltag sind hygienische Aspekte zu berücksichtigen. Für alle Neuentwicklungen ist der Einsatz in einem sinnvollen und reproduzierbaren Gesamtkonzept zu definieren.

Abstract

Technically-assisted rehabilitation of mobility after stroke is well established for several years. There is good evidence for the use of end-effector devices, exoskeletons and treadmill training with and without body weight support. New developments provide the possibility of functional training during mobilisation already in intensive care units. Mobile exoskeleton devices have been developed, but their clinical effects are yet to be evaluated. All devices should focus not only on increasing the number of repetitions, but also include motivational aspects such as virtual reality environments. Hygienic aspects represent a special challenge. All devices should be integrated into a rational and clearly defined therapy concept.

 
  • Literatur

  • 1 Mehrholz J, Thomas S, Werner C. et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2017; CD006185
  • 2 Hesse S, Bertelt C, Jahnke MT. et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke 1995; 26: 976-981
  • 3 Hesse S. Lokomotionstherapie: ein praxisorientierter Überblick. Bad Honnef: Hippocampus-Verl; 2007
  • 4 Dohle C, Tholen R, Wittenberg H. et al. ReMoS Arbeitsgruppe. Rehabilitation der Mobilität nach Schlaganfall (ReMoS). Neurol Rehabil 2015; 21: 355-494
  • 5 Dohle C, Tholen R, Wittenberg H. et al. Evidenzbasierte Rehabilitation der Mobilität nach Schlaganfall. Nervenarzt 2016; 87: 1062-1067
  • 6 Pohl M, Bertram M, Bucka C. et al. Patientenklientel und Rehabilitationsverlauf in der neurologisch-neurochirurgischen Frührehabilitation – ein Vergleich der Jahre 2002 und 2014. Akt Neurol 2016; 43: 534-540
  • 7 Rollnik J, Adolphsen J, Bauer J. et al. Prolongiertes Weaning in der neurologisch-neurochirurgischen Frührehabilitation – S2k-Leitlinie. Nervenarzt 2017; 88: 652-674
  • 8 Luther MS, Krewer C, Müller F. et al. Comparison of orthostatic reactions of patients still unconscious within the first three months of brain injury on a tilt table with and without integrated stepping. A prospective, randomized crossover pilot trial. Clin Rehabil 2008; 22: 1034-1041
  • 9 Herrero AJ, Menéndez H, Gil L. et al. Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord injury. Spinal Cord 2011; 49: 554-559
  • 10 Hesse S, Uhlenbrock D, Sarkodie-Gyan T. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support. Clin Rehabil 1999; 13: 401-410
  • 11 Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 2010; 7: 30
  • 12 Riener R, Nenburger L, Maier IC. et al. Locomotor training in subjects with sensori-motor deficits: an overview of the Robotic Gait Orthosis Lokomat. J Healthc Eng 2010; 1: 197-216
  • 13 Peurala SH, Airaksinen O, Huuskonen P. et al. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med 2009; 41: 166-173
  • 14 Hidler JM, Wall AE. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech Bristol Avon 2005; 20: 184-193
  • 15 Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med 2012; 44: 193-199
  • 16 Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil 2015; 21: 110-121
  • 17 Hartigan C, Kandilakis C, Dalley S. et al. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil 2015; 21: 93-99
  • 18 Esquenazi A, Talaty M, Packel A. et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 2012; 91: 911-921
  • 19 Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices Auckl NZ 2016; 9: 455-466
  • 20 Duncan PW, Sullivan KJ, Behrman AL. et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med 2011; 364: 2026-2036
  • 21 Hidler J, Nichols D, Pelliccio M. et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 2009; 23: 5-13
  • 22 Gordon NF, Gulanick M, Costa F. et al. Physical Activity and Exercise Recommendations for Stroke Survivors. Circulation 2004; 109: 2031-2041
  • 23 Lee M-J, Kilbreath SL, Singh MF. et al. Comparison of effect of aerobic cycle training and progressive resistance training on walking ability after stroke: a randomized sham exercise-controlled study. J Am Geriatr Soc 2008; 56: 976-985
  • 24 Laver KE, George S, Thomas S. et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2015; CD008349
  • 25 Koenig A, Omlin X, Bergmann J. et al. Controlling patient participation during robot-assisted gait training. J Neuroeng Rehabil 2011; 8: 14
  • 26 Ferreira dos Santos L, Christ O, Mate K. et al. Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review. Biomed Eng OnLine 2016; 15: 144
  • 27 Pohl M, Werner C, Holzgraefe M. et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil 2007; 21: 17-27
  • 28 Rollnik JD, Samady A-M, Grüter L. Multiresistente Erreger in der neurologisch-neurochirurgischen Frührehabilitation (2004–2013). Rehabil 2014; 53: 346-350