Drug Res (Stuttg) 2018; 68(06): 317-327
DOI: 10.1055/s-0043-121464
Review
© Georg Thieme Verlag KG Stuttgart · New York

An Insight on Silk Protein Sericin: From Processing to Biomedical Application

Farogh Ahsan
1   Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, (India)
,
Tarique Mahmood Ansari
1   Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, (India)
,
Shazia Usmani
2   Department of Pharmacognosy, Faculty of Pharmacy, Integral University, Lucknow, (India)
,
Paramdeep Bagga
3   Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, (India)
› Author Affiliations
Further Information

Publication History

received 29 July 2017

accepted 14 October 2017

Publication Date:
13 November 2017 (online)

Abstract

Silks are naturally occurring polymers that have been used clinically as sutures for hundreds of years. It’s so for obtained from insects or worms, silk consists of a filament core protein, termed fibroin, and a glue-like coating made up of sericin proteins. An important component of silk has an extended history of being discarded as a waste in the course of silk processing. The cost of sericin for tissue engineering is underestimated and its capability in using as regenerative remedy has simply began to be explored. Its variable amino acid composition and various functional groups confer upon it attractive bioactive proteins, which are particularly interesting for biomedical programs. Because of its antioxidant properties, moisturizing ability, and mitogenic effect on mammalian cells, sericin is beneficial in cell regeneration and tissue engineering. Research shows that keratinocytes and fibroblasts have brought about the improvement of sericin-primarily based biomaterials for skin tissue repair, in particular as wound dressings. Moreover, sericin may be used for bone tissue engineering due to its ability to set off nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, as films, sponges, and hydrogels, are obtained by means of cross-linking, ethanol precipitation, or mixing with different polymers. Now a day, sericin may also be used for delivery of drugs due to its chemical reactivity and pH-responsiveness which facilitate the fabrication of nano and microparticles, hydrogels, and conjugated molecules, enhancing the bioactivity of drugs. In this review, we outlined the current headways from extraction of sericin till its physical properties and biomedical applications.

 
  • References

  • 1 Nagaraju J. Silk of India, grace and luster. Biotech News 2008; 3: 4-7
  • 2 Humenik M, Scheibel T, Smith A. Spider silk: understanding the structure-function relationship of a natural fibre. Prog Mol Biol Transl Sci 2011; 103: 131-185
  • 3 Komatsu K. Studies on dissolution behaviours and structural characteristic of silk. Bull. Sericult Exp Sta 1975; 26: 135-256
  • 4 Ogino M, Tanaka R, Hattori M. et al. Interfacial behaviour of fatty-acylated sericin prepared by lipase-catalyzed solid-phase synthesis. Biosci Biotechnol Biochem 2006; 70: 66-75
  • 5 Zhang YQ, Ma Y, Xia YY. et al. Silk sericin–insulin bioconjugates: Synthesis, characterization and biological activity. J Control Release 2006; 115: 307-315
  • 6 Turbiani FR, Tomadon JJ, Seixas FL. et al. Properties and structure of sericin films: Effect of the crosslinking degree. Chem Eng Trans 2011; 24: 1489-1494
  • 7 Terada S, Nishimura T, Sasaki M. et al. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 2002; 40: 3-12
  • 8 Raje SS, Rekha VD. Regenerated Silk Fibroin. Man Made Text in India 1998; 41: 249-254
  • 9 Sericulture, Chapter VIII, Annual Report 2002-2003, (Ministry of Textile, Central Sil Board, Bangalore): 73-78
  • 10 Iizuka E. Silk (Physicochemical Properties), the Polymeric Materials Encyclopedia CRC Press 1996; 456-457
  • 11 Gulrajani ML. editor. Silk dyeing, printing, and finishing. Department of Textile Technology, Indian Institute of Technology; 1988. 2 23-24
  • 12 Patel RJ, Modasiya MK. Sericin: Pharmaceutical applications. Int J Pharm Res Biomed Sci 2011; 2: 913-917
  • 13 Mondal M. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.-a review. Caspian J Env Sci 2007; 5: 63-76
  • 14 Khan MM, Tsukada M, Gotoh Y. et al. Physical properties and dyeability of silk fibres degummed with citric acid. Bioresour Technol 2010; 101: 8439-8445
  • 15 Altman GH, Diaz F, Jakuba C. et al. Silk-based biomaterials. Biomaterials 2003; 24: 401-416
  • 16 Komatsu K. Studies on dissolution behaviours and structural characteristic of silk sericin. Bull Sericult Exp Sta 1975; 26: 135-256
  • 17 Kim UJ, Park J, Kim HJ. et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005; 26: 2775-2785
  • 18 Kodrik D. Small protein components of the cocoons in Galleria mellonella (Lepidoptera, Pyralidae) and Bombyx mori (Lepidoptera, Bombycidae). Acta Entomol Bohemoslov 1992; 89: 269-273
  • 19 Pescio F, Zunini H, Basso CP. et al. Sericultura: manual para la producción. (1a ed.) Buenos Aires: Instituto Nacional de Tecnologia Industrial (INTI); 2008: 2-3
  • 20 Barajas-Gamboa JA, Serpa-Guerra AM, Restrepo-Osorio A. et al. Aplicaciones de la sericina: una proteina globular proveniente de la seda. Ingeniería y Competitividad 2016; 18: 193-206
  • 21 Riva Juan A, Prieto Fuentes MR, Neznakomova M. Influencia del tipo de desgomado en el comportamiento tintóreo de la seda. A. Riva, R. Prieto; M. Neznakomova. “Influencia del tipo de desgomado en el comportamiento tintóreo de la seda” en Bolet ín Intexter, núm 2001; 119: 35-42
  • 22 Sinohara H. Glycopeptides isolated from sericin of the silkworm, Bombyx mori. Comp Biochem Physiol 1979; 63: 87-91
  • 23 Santin M, Motta A, Freddi G. et al. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 1999; 46: 382-389
  • 24 Meinel L, Hofmann S, Karageorgiou V. et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005; 26: 147-155
  • 25 Padol AR, Jayakumar K, Shridhar NB. et al. Safety evaluation of silk protein film (a novel wound healing agent) in terms of acute dermal toxicity, acute dermal irritation and skin sensitization. Toxicol Int 2011; 18: 17
  • 26 Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 2003; 24: 357-365
  • 27 Arai T, Freddi G, Innocenti R. et al. Biodegradation of Bombyx mori silk fibroin fibres and films. J Appl Polym Sci 2004; 91: 2383-2390
  • 28 Tsuboi Y, Ikejiri T, Shiga S. et al. Light can transform the secondary structure of silk protein. Appl Phys A: Mat Sci Pro 2001; 73: 637-640
  • 29 Inoue S, Tanaka K, Arisaka F. et al. Silk fibroin of B. mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6: 6: 1 molar ratio. J Biol Chem 2000; 275: 40517-40528
  • 30 Takasu Y, Yamada H, Tsubouchi K. Isolation of three fundamental sericin segments from the case of the silks worm, Bombyx mori. Biosci Biotechnol Biochem 2002; 66: 2715-2718
  • 31 Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007; 32: 991-1007
  • 32 Wu JH, Wang Z, Xu SY. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem 2007; 103: 1255-1262
  • 33 Vaithanomsat P, Kitpreechavanich V. Sericin separation from silk degumming wastewater. Sep Purif Technol 2008; 59: 129-133
  • 34 Capar G, Aygun SS, Gecit MR. Treatment of silk production wastewaters by membrane processes for sericin recovery. J Membr Sci 2008; 325: 920-931
  • 35 Hoa M, Wanga H, Laua K. Effect of degumming time on silksilk worm silk fibre for biodegradable polymer composites. Appl Surf Sci 2012; 258: 3948-3955
  • 36 Voegeli R, Meier J, Blust R. Sericin silk protein: unique structure and properties. Cosmet Toilet 1993; 108: 101-108
  • 37 Shaw JT, Smith SG. Amino-acids of silk sericin. Nature 1951; 168: 745
  • 38 Wang T, Wang J, Zhou J. γ-Ray study on the sericin structure of cocoon silk. Fangzhi Xuebao 1985; 6: 133-134
  • 39 Tsukada M. Effect of casting temperature on the structure of silk sericin. J Polym Sci: Polym Lett Ed 1980; 18: 133
  • 40 Wei T, Li MZ. et al. Preparation and structure of porous silk sericin materials. Macr Mat Eng 2005; 290: 188-194
  • 41 Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 2002; 20: 91-100
  • 42 Aramwit P, Keongamaroon O, Siritientong T. et al. Sericin cream reduces pruritus in hemodialysis patients: a randomized, double-blind, placebo-controlled experimental study. BMC Nephrology 2012; 13: 119
  • 43 Keawkorn W, Limpeanchob N, Tiyaboonchai W. et al. The effect of dietary sericin on rats. Sci Asia 2013; 39: 252-256
  • 44 Dash R, Ghosh SK, Kaplan DL. et al. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol Part B: Biochem Mol Biol 2007; 147: 129-134
  • 45 Komatsu K. Recent advances in sericin research. J Sericult Sci Jpn 1980; 69: 457-465
  • 46 Rassent J. The molecular weight of sericin. Biochem Biophys Acta 1967; 147: 595-597
  • 47 Tsubouchi K, Yamada H, Yoko T. Manufacture of high molecular weight sericin by extraction. Jpn Kokai Tokkyo Koho Jap 1992; 6: 11092564
  • 48 Patel RJ, Modasiya MK. Sericin: Pharmaceutical Applications. Int J Res Pharm Biomed Sci 2011; 2: 913-917
  • 49 Pak PK. A comparative study on the raw cocoons: degumming by soap and protease. Sumyu Konghak Hoeji 1977; 14: 94-98
  • 50 Krysteva M, Arsov A, Dobrev I. et al. Enzyme removal of sericin from crude silk fibres. Proc Int Conf Chem, Biotechnol Biol Act Nat Prod 1980; 3: 150-154
  • 51 Shelton EM, Johnson TB. Researches on proteins VII the preparation of the protein “sericin” from silk. J Am Chem Soc 1925; 47: 412-418
  • 52 Buadze E. Study of bentonites application possibility in boiling of fibrics from natural silk. Bull Georgian Acad Sci 1999; 159: 110-112
  • 53 Kim H, Lim YJ, Park JH. et al. Dietary silk protein, sericin, improves epidermal hydration with increased levels of filaggrins and free amino acids in NC/NGA mice. Br J Nutr 2012; 108: 1726-1735
  • 54 Gimenes ML, Silva VR, Vieira MG. et al. High molecular sericin from Bombyx mori cocoons: extraction and recovering by ultrafiltration. Int J Chem Eng Appl 2014; 5: 266
  • 55 Sonjui T, Noomhorm C, Promboon A. Sericin recovery from silk cocoon degumming wastewater by a membrane process. Kasetsart J Natl Sci 2009; 43: 538-549
  • 56 Yang M, Shuai Y, Zhou G. et al. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS Appl Mater Interfaces 2014; 6: 13782-13789
  • 57 Da Silva TL, Da Silva Junior AC, Ribani M. et al Evaluation of molecular weight distribution of sericin in solutions concentrated via precipitation by ethanol and precipitation by freezing/thawing. Chem Eng Trans 2014; 38: 103-108
  • 58 Sprague KU. Bombyx mori silk proteins. Characterization of large polypeptides. Biochemistry 1975; 14: 925-931
  • 59 Kurioka A, Kurioka F, Yamazaki M. Characterization of sericin powder prepared from citric acid-degraded sericin polypeptides of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 2004; 68: 774-780
  • 60 Aramwit P, Siritientong T, Srichana T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag & Res 2012; 30: 217-224
  • 61 Kweon HY, Cho CS. Biomedical applications of silk protein. Int J Indust Entomol 2001; 3: 1-6
  • 62 Chirila TV, Suzuki S, McKirdy NC. Further development of silk sericin as a biomaterial: comparative investigation of the procedures for its isolation from Bombyx mori silk cocoons. Prog in Biomater 2016; 5: 135-145
  • 63 Zhaorigetu S, Sasaki M, Watanabe H. et al. Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1, 2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotechnol Biochem 2001; 65: 2181-2186
  • 64 Zhaorigetu S, Sasaki M, Kato N. Consumption of sericin suppresses colon oxidative stress and aberrant crypt foci in 1, 2-dimethylhydrazine-treated rats by colon undigested sericin. J Nutr Sci Vitaminol 2007; 53: 297-300
  • 65 Sasaki M, Yamada H, Kato N. Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutr Res 2000; 20: 1505-1511
  • 66 Okazaki Y, Tomotake H, Tsujimoto K. et al. Consumption of a resistant protein, sericin, elevates fecal immunoglobulin A, mucins, and cecal organic acids in rats fed a high-fat diet. J Nutr 2011; 141: 1975-1981
  • 67 Jantaruk P, Promphet P, Sutheerawattananonda M. Augmentation of natural killer cell activity in vitro and in vivo by sericin-derived oligopeptides. J Appl Biomed 2015; 13: 249-256
  • 68 Tamada Y, Sano M, Niwa K. et al. Sulfation of silk sericin and anticoagulant activity of sulfated sericin. J Biomater Sci Polym Ed 2004; 15: 971-980
  • 69 Sano M, Tamada Y, Niwa K. et al. Sulfated sericin is a novel anticoagulant influencing the blood coagulation cascade. J Biomater Sci Polym Ed. 2009; 20: 773-783
  • 70 Okazaki Y, Kakehi S, Xu Y. et al. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet. Biosci Biotechnol Biochem 2010; 74: 1534-1538
  • 71 Sasaki M, Yamada H, Kato N. A resistant protein, sericin improves atropine-induced constipation in rats. Food Sci Technol Res 2000; 6: 280-283
  • 72 Limpeanchob N, Trisat K, Duangjai A. et al. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells. J Agric Food Chem 2010; 58: 12519-12522
  • 73 Teramoto H, Nakajima KI, Takabayashi C. Preparation of elastic silk sericin hydrogel. Biosci Biotechnol Biochem 2005; 69: 845-847
  • 74 Lamboni L, Gauthier M, Yang G. et al. Silk sericin: a versatile material for tissue engineering and drug delivery. Biotechnol Adv 2015; 33: 1855-1867
  • 75 Takechi T, Wada R, Fukuda T. et al. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods. Biomed Rep 2014; 2: 364-369
  • 76 Khan MS, Singh M, Khan MA. et al. Scientific validation of cardioprotective attribute by standardized extract of Bombyx mori against doxorubicin-induced cardiotoxicity in murine model. EXCLI 2014; 13: 1043
  • 77 Haenen GRMM, Janssen FP, Bast A. The antioxidant properties of five (O-ß-hydroxyethyl) rutosides of the flavonoid mixture. Venoruton Phlebology 1993; 1 Suppl 10-17
  • 78 Mahmood T, Siddiqui HH, Dixit R. et al. Effect of Bombyx mori L. cocoon (Abresham) and its polyherbal formulations against high fat diet induced dyslipidemia, obesity and other related ailments: Comparative study with Atorvastatin and Orlistat. J Nat Pharmaceut 2013; 4: 86-92
  • 79 Srivastav RK, Siddiqui HH, Mahmood T. et al. Evaluation of cardioprotective effect of silk cocoon (Abresham) on isoprenaline-induced myocardial infarction in rats. Avicenna journal phytomed 2013; 3: 216
  • 80 Padamwar MN, Pawar AP. Silk sericin and its applications: A review. J Sci Ind Res 2004; 63: 323-329
  • 81 Takechi T, Takamura H. Development of Bread Supplemented with the Silk Protein Sericin. Food Sci Technol Res 2014; 20: 1021-1026
  • 82 Samaranayaka AGP, Li-Chan ECY. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J Funct Foods 2011; 3: 229-254
  • 83 Kato N, Sasaki M. New physiological functions of sericin and its application for cosmetic and food. Flavour Fragr J 2000; 28: 28-33
  • 84 Yamada H, Yamasaki K, Zozaki K. Nail beauty care products containing sericin. Chem Abstra 2001; 134: 15
  • 85 Hata O. Beautifying agents containing sericin hydrolysates. Chem Abstra 1987; 106: 7
  • 86 Siritientong T, Angspatt A, Ratanavaraporn J. et al. Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites. Pharm Res 2014; 31: 104-116
  • 87 Mandal BB, Priya AS, Kundu SC. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications. Acta Biomaterialia 2009; c5: 3007-3020
  • 88 Wang Z, Zhang Y, Zhang J. et al. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci Rep 2014; 4: 7064
  • 89 Zhang Y, Liu J, Huang L. et al. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci Rep 2015; 5: 12374
  • 90 Nishida A, Yamada M, Kanazawa T. et al. Sustained-release of protein from biodegradable sericin film, gel and sponge. Int J Pharm 2011; 407: 44-52
  • 91 Shiomi H, Yamada H, Nomura M. Surfactants. Jpn Kodai Tokkyo Koho Jap 11276876 A2 (to Seiren Co Ltd Jpn). Chem Abstr 1999; 131: 245154
  • 92 Minoura N, Aiba SI. Gotoh Yet al. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res Part A. 1995; 29: 1215-1221
  • 93 Fujikawa S, Nakamura S, Koga K. et al. Continuous blue pigment formation by gardenia fruit using immobilized growing cells. J Fermen Tech 1987; 65: 711-715
  • 94 Nagura M, Ohnishi R, Gitoh Y. et al. Structures and physical properties of cross-linked sericin membranes. J Insect Biotechnol Sericol 2001; 70: 149-153
  • 95 Hajarian H, Aghaz F, Shabankareh HK. Replacement of serum with sericin in in vitro maturation and culture media: Effects on embryonic developmental competence of Sanjabi sheep embryo during breeding season. Theriogenology 2017; 92: 144-148
  • 96 Kunz RI, Brancalhão RM, Ribeiro LD. et al. Silkworm sericin: Properties and biomedical applications. BioMed Res Int 2016; 14: 2016
  • 97 Verdanova M, Pytlik R, Kalbacova MH. Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells. Biopreserv Biobank 2014; 12: 99-105