CC BY-NC-ND 4.0 · Semin Musculoskelet Radiol 2023; 27(01): 003-021
DOI: 10.1055/s-0043-1761612
Review Article

Advances in Bone Marrow Imaging: Strengths and Limitations from a Clinical Perspective

Charbel Mourad
1   Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
2   Department of Diagnostic and Interventional Radiology, Hôpital Libanais Geitaoui- CHU, Beyrouth, Lebanon
,
Aurelio Cosentino
3   Department of Radiology, Hôpital Riviera-Chablais, Vaud-Valais, Rennaz, Switzerland
,
Marie Nicod Lalonde
4   Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
,
Patrick Omoumi
1   Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
› Author Affiliations

Abstract

Conventional magnetic resonance imaging (MRI) remains the modality of choice to image bone marrow. However, the last few decades have witnessed the emergence and development of novel MRI techniques, such as chemical shift imaging, diffusion-weighted imaging, dynamic contrast-enhanced MRI, and whole-body MRI, as well as spectral computed tomography and nuclear medicine techniques. We summarize the technical bases behind these methods, in relation to the common physiologic and pathologic processes involving the bone marrow. We present the strengths and limitations of these imaging methods and consider their added value compared with conventional imaging in assessing non-neoplastic disorders like septic, rheumatologic, traumatic, and metabolic conditions. The potential usefulness of these methods to differentiate between benign and malignant bone marrow lesions is discussed. Finally, we consider the limitations hampering a more widespread use of these techniques in clinical practice.



Publication History

Article published online:
03 March 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Geith T, Schmidt G, Biffar A. et al. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures. AJR Am J Roentgenol 2012; 199 (05) 1083-1092
  • 2 Zajick Jr DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 2005; 237 (02) 590-596
  • 3 Schmeel FC, Luetkens JA, Wagenhäuser PJ. et al. Proton density fat fraction (PDFF) MRI for differentiation of benign and malignant vertebral lesions. Eur Radiol 2018; 28 (06) 2397-2405
  • 4 Colombo A, Bombelli L, Summers PE. et al. Effects of sex and age on fat fraction, diffusion-weighted image signal intensity and apparent diffusion coefficient in the bone marrow of asymptomatic individuals: a cross-sectional whole-body MRI study. Diagnostics (Basel) 2021; 11 (05) 913
  • 5 Kirchgesner T, Perlepe V, Michoux N, Larbi A, Vande Berg B. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence. Eur J Radiol 2017; 89: 40-46
  • 6 Ma J, Singh SK, Kumar AJ, Leeds NE, Zhan J. T2-weighted spine imaging with a fast three-point Dixon technique: comparison with chemical shift selective fat suppression. J Magn Reson Imaging 2004; 20 (06) 1025-1029
  • 7 Yang S, Lassalle L, Mekki A. et al. Can T2-weighted Dixon fat-only images replace T1-weighted images in degenerative disc disease with Modic changes on lumbar spine MRI?. Eur Radiol 2021; 31 (12) 9380-9389
  • 8 Danner A, Brumpt E, Alilet M, Tio G, Omoumi P, Aubry S. Improved contrast for myeloma focal lesions with T2-weighted Dixon images compared to T1-weighted images. Diagn Interv Imaging 2019; 100 (09) 513-519
  • 9 Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone marrow metastases: T2-weighted Dixon spin-echo fat images can replace T1-weighted spin-echo images. Radiology 2018; 286 (03) 948-959
  • 10 Zanchi F, Richard R, Hussami M, Monier A, Knebel JF, Omoumi P. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence?. Eur Radiol 2020; 30 (05) 2583-2593
  • 11 Omoumi P. The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging. Skeletal Radiol 2022; 51 (07) 1365-1369
  • 12 Hahn S, Lee YH, Suh JS. Detection of vertebral metastases: a comparison between the modified Dixon turbo spin echo T2 weighted MRI and conventional T1 weighted MRI: a preliminary study in a tertiary centre. Br J Radiol 2018; 91 (1085): 20170782
  • 13 Bacher S, Hajdu SD, Maeder Y, Dunet V, Hilbert T, Omoumi P. Differentiation between benign and malignant vertebral compression fractures using qualitative and quantitative analysis of a single fast spin echo T2-weighted Dixon sequence. Eur Radiol 2021; 31 (12) 9418-9427
  • 14 Omoumi P, Obuchowski NA. How to show that a new imaging method can replace a standard method, when no reference standard is available?. Eur Radiol 2022; 32 (04) 2810-2812
  • 15 Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 1997; 7 (02) 394-398
  • 16 Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 1998; 27 (09) 471-483
  • 17 Vande Berg BC, Lecouvet FE, Galant C, Maldague BE, Malghem J. Normal variants and frequent marrow alterations that simulate bone marrow lesions at MR imaging. Radiol Clin North Am 2005; 43 (04) 761-770 , ix
  • 18 Kohl CA, Chivers FS, Lorans R, Roberts CC, Kransdorf MJ. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience. Skeletal Radiol 2014; 43 (08) 1079-1084
  • 19 Rajakulasingam R, Saifuddin A. Focal nodular marrow hyperplasia: imaging features of 53 cases. Br J Radiol 2020; 93 (1112): 20200206
  • 20 Ragab Y, Emad Y, Gheita T. et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift in-phase and out-of phase MR imaging. Eur J Radiol 2009; 72 (01) 125-133
  • 21 Yoo HJ, Hong SH, Kim DH. et al. Measurement of fat content in vertebral marrow using a modified Dixon sequence to differentiate benign from malignant processes. J Magn Reson Imaging 2017; 45 (05) 1534-1544
  • 22 Kwack KS, Lee HD, Jeon SW, Lee HY, Park S. Comparison of proton density fat fraction, simultaneous R2*, and apparent diffusion coefficient for assessment of focal vertebral bone marrow lesions. Clin Radiol 2020; 75 (02) 123-130
  • 23 Özgen A. The value of the T2-weighted multipoint Dixon sequence in MRI of sacroiliac joints for the diagnosis of active and chronic sacroiliitis. AJR Am J Roentgenol 2017; 208 (03) 603-608
  • 24 Huang H, Zhang Y, Zhang H. et al. Qualitative and quantitative assessment of sacroiliitis in axial spondyloarthropathy: can a single T2-weighted Dixon sequence replace the standard protocol?. Clin Radiol 2020; 75 (04) 321.e13-321.e20
  • 25 Griffith JF, Yeung DKW, Antonio GE. et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006; 241 (03) 831-838
  • 26 Wáng YXJ, Griffith JF, Deng M, Yeung DK, Yuan J. Rapid increase in marrow fat content and decrease in marrow perfusion in lumbar vertebra following bilateral oophorectomy: an MR imaging-based prospective longitudinal study. Korean J Radiol 2015; 16 (01) 154-159
  • 27 Kühn JP, Hernando D, Meffert PJ. et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol 2013; 23 (12) 3432-3439
  • 28 You JH, Kim IH, Hwang J, Lee HS, Park EH. Fracture of ankle: MRI using opposed-phase imaging obtained from turbo spin echo modified Dixon image shows improved sensitivity. Br J Radiol 2018; 91 (1088): 20170779
  • 29 Saifuddin A, Santiago R, van Vucht N, Pressney I. Comparison of T1-weighted turbo spin echo and out-of-phase T1-weighted gradient echo Dixon MRI for the assessment of intra-medullary length of appendicular bone tumours. Skeletal Radiol 2021; 50 (05) 993-1005
  • 30 Han X, Hong G, Guo Y. et al. Novel MRI technique for the quantification of biochemical deterioration in steroid-induced osteonecrosis of femoral head: a prospective diagnostic trial. J Hip Preserv Surg 2021; 8 (01) 40-50
  • 31 van Vucht N, Santiago R, Pressney I, Saifuddin A. Anomalous signal intensity increase on out-of-phase chemical shift imaging: a manifestation of marrow mineralisation?. Skeletal Radiol 2020; 49 (08) 1269-1275
  • 32 Takasu M, Kaichi Y, Tani C. et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) magnetic resonance imaging as a biomarker for symptomatic multiple myeloma. PLoS One 2015; 10 (02) e0116842
  • 33 Borga M, Ahlgren A, Romu T, Widholm P, Dahlqvist Leinhard O, West J. Reproducibility and repeatability of MRI-based body composition analysis. Magn Reson Med 2020; 84 (06) 3146-3156
  • 34 Biffar A, Dietrich O, Sourbron S, Duerr HR, Reiser MF, Baur-Melnyk A. Diffusion and perfusion imaging of bone marrow. Eur J Radiol 2010; 76 (03) 323-328
  • 35 Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR Biomed 2017; 30 (03) e3333
  • 36 Karampinos DC, Ruschke S, Dieckmeyer M. et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 2018; 47 (02) 332-353
  • 37 Kruk KA, Dietrich TJ, Wildermuth S. et al. Diffusion-weighted imaging distinguishes between osteomyelitis, bone marrow edema, and healthy bone on forefoot magnetic resonance imaging. J Magn Reson Imaging 2022; 56 (05) 1571-1579
  • 38 Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A. Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 2009; 13 (02) 134-144
  • 39 Zhang CY, Rong R, Wang XY. Age-related changes of bone marrow of normal adult man on diffusion weighted imaging. Chin Med Sci J 2008; 23 (03) 162-165
  • 40 Tsujikawa T, Oikawa H, Tasaki T. et al. Whole-body bone marrow DWI correlates with age, anemia, and hematopoietic activity. Eur J Radiol 2019; 118: 223-230
  • 41 Ahlawat S, Debs P, Amini B, Lecouvet FE, Omoumi P, Wessell DE. Clinical applications and controversies of whole-body MRI: AJR expert panel narrative review. AJR Am J Roentgenol 2022
  • 42 Van Den Berghe T, Verstraete KL, Lecouvet FE, Lejoly M, Dutoit J. Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma). Skeletal Radiol 2022; 51 (01) 101-122
  • 43 Messiou C, Hillengass J, Delorme S. et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 2019; 291 (01) 5-13
  • 44 Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol 2018; 28 (07) 2890-2902
  • 45 Eren MA, Karakaş E, Torun AN, Sabuncu T. The clinical value of diffusion-weighted magnetic resonance imaging in diabetic foot infection. J Am Podiatr Med Assoc 2019; 109 (04) 277-281
  • 46 Abdel Razek AAK, Samir S. Diagnostic performance of diffusion-weighted MR imaging in differentiation of diabetic osteoarthropathy and osteomyelitis in diabetic foot. Eur J Radiol 2017; 89: 221-225
  • 47 Diez AIG, Fuster D, Morata L. et al. Comparison of the diagnostic accuracy of diffusion-weighted and dynamic contrast-enhanced MRI with 18F-FDG PET/CT to differentiate osteomyelitis from Charcot neuro-osteoarthropathy in diabetic foot. Eur J Radiol 2020; 132: 109299
  • 48 Patel KB, Poplawski MM, Pawha PS, Naidich TP, Tanenbaum LN. Diffusion-weighted MRI “claw sign” improves differentiation of infectious from degenerative modic type 1 signal changes of the spine. AJNR Am J Neuroradiol 2014; 35 (08) 1647-1652
  • 49 Eguchi Y, Ohtori S, Yamashita M. et al. Diffusion magnetic resonance imaging to differentiate degenerative from infectious endplate abnormalities in the lumbar spine. Spine 2011; 36 (03) E198-E202
  • 50 Dumont RA, Keen NN, Bloomer CW. et al. Clinical utility of diffusion-weighted imaging in spinal infections. Clin Neuroradiol 2019; 29 (03) 515-522
  • 51 Moritani T, Kim J, Capizzano AA, Kirby P, Kademian J, Sato Y. Pyogenic and non-pyogenic spinal infections: emphasis on diffusion-weighted imaging for the detection of abscesses and pus collections. Br J Radiol 2014; 87 (1041): 20140011
  • 52 Balliu E, Vilanova JC, Peláez I. et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 2009; 69 (03) 560-566
  • 53 Pui MH, Mitha A, Rae WID, Corr P. Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging 2005; 15 (02) 164-170
  • 54 Kucybała I, Ciuk S, Urbanik A, Wojciechowski W. The usefulness of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) sequences visual assessment in the early diagnosis of axial spondyloarthritis. Rheumatol Int 2019; 39 (09) 1559-1565
  • 55 Boy FN, Kayhan A, Karakas HM, Unlu-Ozkan F, Silte D, Aktas İ. The role of multi-parametric MR imaging in the detection of early inflammatory sacroiliitis according to ASAS criteria. Eur J Radiol 2014; 83 (06) 989-996
  • 56 Chung HY, Xu X, Lau VWH. et al. Comparing diffusion weighted imaging with clinical and blood parameters, and with short tau inversion recovery sequence in detecting spinal and sacroiliac joint inflammation in axial spondyloarthritis. Clin Exp Rheumatol 2017; 35 (02) 262-269
  • 57 Dallaudière B, Dautry R, Preux PM. et al. Comparison of apparent diffusion coefficient in spondylarthritis axial active inflammatory lesions and type 1 Modic changes. Eur J Radiol 2014; 83 (02) 366-370
  • 58 Tuna IS, Tarhan B, Escobar M, Albayram MS. T2-blackout effect on DWI as a sign of early bone infarct and sequestration in a patient with sickle cell disease. Clin Imaging 2019; 54: 15-20
  • 59 Öner AY, Aggunlu L, Akpek S. et al. Staging of hip avascular necrosis: is there a need for DWI?. Acta Radiol 2011; 52 (01) 111-114
  • 60 Cui FZ, Yao QQ, Cui JL, Wei W, Duan LS, Yu H. The signal intensity characteristics of normal bone marrow in diffusion weighted imaging at various menstrual status women. Eur J Radiol 2021; 143: 109938
  • 61 Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Techniques for diffusion-weighted imaging of bone marrow. Eur J Radiol 2005; 55 (01) 64-73
  • 62 Leach MO, Morgan B, Tofts PS. et al; Experimental Cancer Medicine Centres Imaging Network Steering Committee. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 2012; 22 (07) 1451-1464
  • 63 Tofts PS, Brix G, Buckley DL. et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10 (03) 223-232
  • 64 Daugaard CL, Riis RG, Bandak E. et al. Perfusion in bone marrow lesions assessed on DCE-MRI and its association with pain in knee osteoarthritis: a cross-sectional study. Skeletal Radiol 2020; 49 (05) 757-764
  • 65 Cultot A, Norberciak L, Coursier R. et al. Bone perfusion and adiposity beyond the necrotic zone in femoral head osteonecrosis: a quantitative MRI study. Eur J Radiol 2020; 131: 109206
  • 66 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 1997; 26 (07) 414-418
  • 67 Weiss L. The structure of bone marrow. Functional interrelationships of vascular and hematopoietic compartments in experimental hemolytic anemia: an electron microscopic study. J Morphol 1965; 117 (03) 467-537
  • 68 De Bruyn PPH, Breen PC, Thomas TB. The microcirculation of the bone marrow. Anat Rec 1970; 168 (01) 55-68
  • 69 Chen WT, Shih TTF, Chen RC. et al. Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 2001; 220 (01) 213-218
  • 70 Zhang X, Pang H, Dong Y. et al. A study of dynamic contrast-enhanced MR imaging features and influence factors of pelvic bone marrow in adult females. Osteoporos Int 2019; 30 (12) 2469-2476
  • 71 Breault SR, Heye T, Bashir MR. et al. Quantitative dynamic contrast-enhanced MRI of pelvic and lumbar bone marrow: effect of age and marrow fat content on pharmacokinetic parameter values. AJR Am J Roentgenol 2013; 200 (03) W297-303
  • 72 Guan Y, Peck KK, Lyo J. et al. T1-weighted dynamic contrast-enhanced MRI to differentiate nonneoplastic and malignant vertebral body lesions in the spine. Radiology 2020; 297 (02) 382-389
  • 73 Arevalo-Perez J, Peck KK, Lyo JK, Holodny AI, Lis E, Karimi S. Differentiating benign from malignant vertebral fractures using T1 -weighted dynamic contrast-enhanced MRI. J Magn Reson Imaging 2015; 42 (04) 1039-1047
  • 74 Liao D, Xie L, Han Y. et al. Dynamic contrast-enhanced magnetic resonance imaging for differentiating osteomyelitis from acute neuropathic arthropathy in the complicated diabetic foot. Skeletal Radiol 2018; 47 (10) 1337-1347
  • 75 Zampa V, Bargellini I, Rizzo L. et al. Role of dynamic MRI in the follow-up of acute Charcot foot in patients with diabetes mellitus. Skeletal Radiol 2011; 40 (08) 991-999
  • 76 Fei ZP, Fei QP, Niu H, Wu J, Ming NG. Application of dynamic contrast enhanced MRI in the diagnosis of brucellar spondylitis. Radiol Infect Dis 2019; 6 (02) 54-60
  • 77 Qiao P, Zhao P, Gao Y, Bai Y, Niu G. Differential study of DCE-MRI parameters in spinal metastatic tumors, brucellar spondylitis and spinal tuberculosis. Chin J Cancer Res 2018; 30 (04) 425-431
  • 78 Verma M, Sood S, Singh B, Thakur M, Sharma S. Dynamic contrast-enhanced magnetic resonance perfusion volumetrics can differentiate tuberculosis of the spine and vertebral malignancy. Acta Radiol 2021; 63 (11) 1504-1512
  • 79 Lang N, Su MY, Yu HJ, Yuan H. Differentiation of tuberculosis and metastatic cancer in the spine using dynamic contrast-enhanced MRI. Eur Spine J 2015; 24 (08) 1729-1737
  • 80 Albano D, Bruno F, Agostini A. et al; Young SIRM Working Group. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2022; 40 (04) 341-366
  • 81 Chiabai O, Van Nieuwenhove S, Vekemans MC. et al. Whole-body MRI in oncology: can a single anatomic T2 Dixon sequence replace the combination of T1 and STIR sequences to detect skeletal metastasis and myeloma?. Eur Radiol 2023; 33 (01) 244-257
  • 82 Delgado J, Chauvin NA, Bedoya MA, Patel SJ, Anupindi SA. Whole-body magnetic resonance imaging in the evaluation of children with fever without a focus. Pediatr Radiol 2021; 51 (04) 605-613
  • 83 Tavakoli AA, Reichert M, Blank T. et al. Findings in whole body MRI and conventional imaging in patients with fever of unknown origin—a retrospective study. BMC Med Imaging 2020; 20 (01) 94
  • 84 Voit AM, Arnoldi AP, Douis H. et al. Whole-body magnetic resonance imaging in chronic recurrent multifocal osteomyelitis: clinical longterm assessment may underestimate activity. J Rheumatol 2015; 42 (08) 1455-1462
  • 85 Andronikou S, Kraft JK, Offiah AC. et al. Whole-body MRI in the diagnosis of paediatric CNO/CRMO. Rheumatology (Oxford) 2020; 59 (10) 2671-2680
  • 86 Kieninger A, Schäfer JF, Tsiflikas I. et al. Early diagnosis and response assessment in chronic recurrent multifocal osteomyelitis: changes in lesion volume and signal intensity assessed by whole-body MRI. Br J Radiol 2022; 95 (1130): 20211091
  • 87 Arnoldi AP, Schlett CL, Douis H. et al. Whole-body MRI in patients with non-bacterial osteitis: radiological findings and correlation with clinical data. Eur Radiol 2017; 27 (06) 2391-2399
  • 88 Roderick M, Shah R, Finn A, Ramanan AV. Efficacy of pamidronate therapy in children with chronic non-bacterial osteitis: disease activity assessment by whole body magnetic resonance imaging. Rheumatology (Oxford) 2014; 53 (11) 1973-1976
  • 89 Bhat CS, Roderick M, Sen ES, Finn A, Ramanan AV. Efficacy of pamidronate in children with chronic non-bacterial osteitis using whole body MRI as a marker of disease activity. Pediatr Rheumatol Online J 2019; 17 (01) 35
  • 90 Wang L, Sun B, Li C. Clinical and radiological remission of osteoarticular and cutaneous lesions in SAPHO patients treated with secukinumab: a case series. J Rheumatol 2021; 48 (06) 953-955
  • 91 Lecouvet FE, Vander Maren N, Collette L. et al. Whole body MRI in spondyloarthritis (SpA): preliminary results suggest that DWI outperforms STIR for lesion detection. Eur Radiol 2018; 28 (10) 4163-4173
  • 92 Althoff CE, Sieper J, Song I-H. et al. Comparison of clinical examination versus whole-body magnetic resonance imaging of enthesitis in patients with early axial spondyloarthritis during 3 years of continuous etanercept treatment. J Rheumatol 2016; 43 (03) 618-624
  • 93 Giraudo C, Lecouvet FE, Cotten A. et al. Whole-body magnetic resonance imaging in inflammatory diseases: where are we now? Results of an international survey by the European Society of Musculoskeletal Radiology. Eur J Radiol 2021; 136: 109533
  • 94 Østergaard M, Eshed I, Althoff CE. et al. Whole-body magnetic resonance imaging in inflammatory arthritis: systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol 2017; 44 (11) 1699-1705
  • 95 Krabbe S, Østergaard M, Eshed I. et al. Whole-body magnetic resonance imaging in axial spondyloarthritis: reduction of sacroiliac, spinal, and entheseal inflammation in a placebo-controlled trial of adalimumab. J Rheumatol 2018; 45 (05) 621-629
  • 96 Weckbach S, Schewe S, Michaely HJ, Steffinger D, Reiser MF, Glaser C. Whole-body MR imaging in psoriatic arthritis: additional value for therapeutic decision making. Eur J Radiol 2011; 77 (01) 149-155
  • 97 Song IH, Hermann K, Haibel H. et al. Effects of etanercept versus sulfasalazine in early axial spondyloarthritis on active inflammatory lesions as detected by whole-body MRI (ESTHER): a 48-week randomised controlled trial. Ann Rheum Dis 2011; 70 (04) 590-596
  • 98 Krabbe S, Eshed I, Sørensen IJ. et al. Novel whole-body magnetic resonance imaging response and remission criteria document diminished inflammation during golimumab treatment in axial spondyloarthritis. Rheumatology (Oxford) 2020; 59 (11) 3358-3368
  • 99 Poll LW, Cox ML, Godehardt E, Steinhof V, vom Dahl S. Whole body MRI in type I Gaucher patients: evaluation of skeletal involvement. Blood Cells Mol Dis 2011; 46 (01) 53-59
  • 100 Yokota S, Sakamoto K, Shimizu Y. et al. Evaluation of whole-body modalities for diagnosis of multifocal osteonecrosis—a pilot study. Arthritis Res Ther 2021; 23 (01) 83
  • 101 Herrmann J, Afat S, Brendlin A, Chaika M, Lingg A, Othman AE. Clinical evaluation of an abbreviated contrast-enhanced whole-body MRI for oncologic follow-up imaging. Diagnostics (Basel) 2021; 11 (12) 2368
  • 102 Lecouvet FE, Pasoglou V, Van Nieuwenhove S. et al. Shortening the acquisition time of whole-body MRI: 3D T1 gradient echo Dixon vs fast spin echo for metastatic screening in prostate cancer. Eur Radiol 2020; 30 (06) 3083-3093
  • 103 Machann J, Stefan N, Schick F. (1)H MR spectroscopy of skeletal muscle, liver and bone marrow. Eur J Radiol 2008; 67 (02) 275-284
  • 104 Ecklund K, Vajapeyam S, Mulkern RV. et al. Bone marrow fat content in 70 adolescent girls with anorexia nervosa: magnetic resonance imaging and magnetic resonance spectroscopy assessment. Pediatr Radiol 2017; 47 (08) 952-962
  • 105 Badr S, Legroux-Gérot I, Vignau J. et al. Comparison of regional bone marrow adiposity characteristics at the hip of underweight and weight-recovered women with anorexia nervosa using magnetic resonance spectroscopy. Bone 2019; 127: 135-145
  • 106 Degnan AJ, Ho-Fung VM, Wang DJ, Ficicioglu C, Jaramillo D. Gaucher disease status and treatment assessment: pilot study using magnetic resonance spectroscopy bone marrow fat fractions in pediatric patients. Clin Imaging 2020; 63: 1-6
  • 107 Yuan W, Lei Y, Tang C. et al. Quantification of bone marrow edema in rheumatoid arthritis by using high-speed T2-corrected multiecho acquisition of 1H magnetic resonance spectroscopy: a feasibility study. Clin Rheumatol 2021; 40 (11) 4639-4647
  • 108 Oriol A, Valverde D, Capellades J, Cabañas ME, Ribera JM, Arús C. In vivo quantification of response to treatment in patients with multiple myeloma by 1H magnetic resonance spectroscopy of bone marrow. MAGMA 2007; 20 (02) 93-101
  • 109 Bolacchi F, Uccioli L, Masala S. et al. Proton magnetic resonance spectroscopy in the evaluation of patients with acute Charcot neuro-osteoarthropathy. Eur Radiol 2013; 23 (10) 2807-2813
  • 110 Lee SH, Yoo HJ, Yu SM, Hong SH, Choi JY, Chae HD. Fat quantification in the vertebral body: comparison of modified Dixon technique with single-voxel magnetic resonance spectroscopy. Korean J Radiol 2019; 20 (01) 126-133
  • 111 Park S, Kwack KS, Chung NS, Hwang J, Lee HY, Kim JH. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions. Skeletal Radiol 2017; 46 (05) 675-683
  • 112 Jo A, Jung JY, Lee SY. et al. Prognosis prediction in initially diagnosed multiple myeloma patients using intravoxel incoherent motion-diffusion weighted imaging and multiecho Dixon imaging. J Magn Reson Imaging 2021; 53 (02) 491-501
  • 113 Omoumi P, Becce F, Racine D, Ott JG, Andreisek G, Verdun FR. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 1). Semin Musculoskelet Radiol 2015; 19 (05) 431-437
  • 114 Omoumi P, Zufferey P, Malghem J, So A. Imaging in gout and other crystal-related arthropathies. Rheum Dis Clin North Am 2016; 42 (04) 621-644
  • 115 Omoumi P, Verdun FR, Guggenberger R, Andreisek G, Becce F, Dual-Energy CT. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 2). Semin Musculoskelet Radiol 2015; 19 (05) 438-445
  • 116 Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology 2018; 289 (02) 293-312
  • 117 Esquivel A, Ferrero A, Mileto A. et al. Photon-counting detector CT: key points radiologists should know. Korean J Radiol 2022; 23 (09) 854-865
  • 118 Rajendran K, Petersilka M, Henning A. et al. First clinical photon-counting detector CT system. 2022; 303 (01) 130-138
  • 119 Arentsen L, Yagi M, Takahashi Y. et al. Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone 2015; 72: 118-122
  • 120 Cheraya G, Sharma S, Chhabra A. Dual energy CT in musculoskeletal applications beyond crystal imaging: bone marrow maps and metal artifact reduction. Skeletal Radiol 2022; 51 (08) 1521-1534
  • 121 Kosmala A, Weng AM, Heidemeier A. et al. Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology 2018; 286 (01) 205-213
  • 122 Abdullayev N, Große Hokamp N, Lennartz S. et al. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol 2019; 29 (11) 5941-5949
  • 123 Yuan Y, Zhang Y, Lang N, Li J, Yuan H. Differentiating malignant vertebral tumours from non-malignancies with CT spectral imaging: a preliminary study. Eur Radiol 2015; 25 (10) 2945-2950
  • 124 Dong Y, Zheng S, Machida H. et al. Differential diagnosis of osteoblastic metastases from bone islands in patients with lung cancer by single-source dual-energy CT: advantages of spectral CT imaging. Eur J Radiol 2015; 84 (05) 901-907
  • 125 Zheng S, Dong Y, Miao Y. et al. Differentiation of osteolytic metastases and Schmorl's nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol 2014; 83 (07) 1216-1221
  • 126 Yuan Y, Lang N, Yuan H. Rapid-kilovoltage-switching dual-energy computed tomography (CT) for differentiating spinal osteolytic metastases from spinal infections. Quant Imaging Med Surg 2021; 11 (02) 620-627
  • 127 Cavallaro M, D'Angelo T, Albrecht MH. et al. Comprehensive comparison of dual-energy computed tomography and magnetic resonance imaging for the assessment of bone marrow edema and fracture lines in acute vertebral fractures. Eur Radiol 2022; 32 (01) 561-571
  • 128 Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 2013; 269 (02) 525-533
  • 129 Akisato K, Nishihara R, Okazaki H. et al. Dual-energy CT of material decomposition analysis for detection with bone marrow edema in patients with vertebral compression fractures. Acad Radiol 2020; 27 (02) 227-232
  • 130 Pan J, Yan L, Gao H. et al. Fast kilovoltage (KV)-switching dual-energy computed tomography hydroxyapatite (HAP)-water decomposition technique for identifying bone marrow edema in vertebral compression fractures. Quant Imaging Med Surg 2020; 10 (03) 604-611
  • 131 Frellesen C, Azadegan M, Martin SS. et al. Dual-energy computed tomography-based display of bone marrow edema in incidental vertebral compression fractures: diagnostic accuracy and characterization in oncological patients undergoing routine staging computed tomography. Invest Radiol 2018; 53 (07) 409-416
  • 132 Ghazi Sherbaf F, Sair HI, Shakoor D. et al. DECT in detection of vertebral fracture-associated bone marrow edema: a systematic review and meta-analysis with emphasis on technical and imaging interpretation parameters. Radiology 2021; 300 (01) 110-119
  • 133 Foti G, Serra G, Iacono V, Zorzi C. Identification of traumatic bone marrow oedema: the pearls and pitfalls of dual-energy CT (DECT). Tomography 2021; 7 (03) 424-433
  • 134 Wilson MP, Lui K, Nobbee D. et al. Diagnostic accuracy of dual-energy CT for the detection of bone marrow edema in the appendicular skeleton: a systematic review and meta-analysis. Eur Radiol 2021; 31 (03) 1558-1568
  • 135 Narayanan A, Dettori N, Chalian M, Xi Y, Komarraju A, Chhabra A. Dual-energy CT-generated bone marrow oedema maps improve timely visualisation and recognition of acute lower extremity fractures. Clin Radiol 2021; 76 (09) 710.e9-710.e14
  • 136 Kellock TT, Nicolaou S, Kim SSY. et al. Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-energy CT application. Radiology 2017; 284 (03) 798-805
  • 137 Reddy T, McLaughlin PD, Mallinson PI. et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol 2015; 22 (01) 25-29
  • 138 Jang SW, Chung BM, Kim WT, Gil JR. Nondisplaced fractures on hip CT: added value of dual-energy CT virtual non-calcium imaging for detection of bone marrow edema using visual and quantitative analyses. Acta Radiol 2019; 60 (11) 1465-1473
  • 139 Palm HG, Lang P, Hackenbroch C, Sailer L, Friemert B. Dual-energy CT as an innovative method for diagnosing fragility fractures of the pelvic ring: a retrospective comparison with MRI as the gold standard. Arch Orthop Trauma Surg 2020; 140 (04) 473-480
  • 140 Gosangi B, Mandell JC, Weaver MJ. et al. Bone marrow edema at dual-energy CT: a game changer in the emergency department. Radiographics 2020; 40 (03) 859-874
  • 141 Issa G, Mulligan M. Dual energy CT can aid in the emergent differentiation of acute traumatic and pathologic fractures of the pelvis and long bones. Emerg Radiol 2020; 27 (03) 285-292
  • 142 Wu H, Zhang G, Shi L. et al. Axial spondyloarthritis: dual-energy virtual noncalcium CT in the detection of bone marrow edema in the sacroiliac joints. Radiology 2019; 290 (01) 157-164
  • 143 Chen M, Herregods N, Jaremko JL. et al. Bone marrow edema in sacroiliitis: detection with dual-energy CT. Eur Radiol 2020; 30 (06) 3393-3400
  • 144 Chen Z, Chen Y, Zhang H, Jia X, Zheng X, Zuo T. Diagnostic accuracy of dual-energy computed tomography (DECT) to detect non-traumatic bone marrow edema: a systematic review and meta-analysis. Eur J Radiol 2022; 153: 110359
  • 145 Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol 2014; 43 (04) 485-492
  • 146 Petritsch B, Kosmala A, Weng AM. et al. Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology 2017; 284 (01) 161-168
  • 147 Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology 2014; 271 (02) 327-342
  • 148 Foti G, Beltramello A, Catania M, Rigotti S, Serra G, Carbognin G. Diagnostic accuracy of dual-energy CT and virtual non-calcium techniques to evaluate bone marrow edema in vertebral compression fractures. Radiol Med (Torino) 2019; 124 (06) 487-494
  • 149 Lauri C, Tamminga M, Glaudemans AWJM. et al. Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care 2017; 40 (08) 1111-1120
  • 150 Govaert GAM, Bosch P, IJpma FFA. et al. High diagnostic accuracy of white blood cell scintigraphy for fracture related infections: results of a large retrospective single-center study. Injury 2018; 49 (06) 1085-1090
  • 151 Gemmel F, Van den Wyngaert H, Love C, Welling MM, Gemmel P, Palestro CJ. Prosthetic joint infections: radionuclide state-of-the-art imaging. Eur J Nucl Med Mol Imaging 2012; 39 (05) 892-909
  • 152 Lalonde MN, Omoumi P, Prior JO, Zufferey P. Imágenes isotópicas del aparato locomoto [in Spanish]. EMC Aparato Locomotor 2021; 54: 1-23 DOI: 10.1016/S0246-0521(21)59763-0.
  • 153 Glaudemans AWJM, Jutte PC, Cataldo MA. et al. Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging 2019; 46 (04) 957-970
  • 154 Takeuchi M, Dahabreh IJ, Nihashi T, Iwata M, Varghese GM, Terasawa T. Nuclear imaging for classic fever of unknown origin: meta-analysis. J Nucl Med 2016; 57 (12) 1913-1919
  • 155 van Rijsewijk ND, IJpma FFA, Wouthuyzen-Bakker M, Glaudemans AWJM. Molecular imaging of fever of unknown origin: an update. Semin Nucl Med 2023; 53 (01) 4-17
  • 156 Meyer M, Testart N, Jreige M. et al. Diagnostic performance of PET or PET/CT using 18F-FDG labeled white blood cells in infectious diseases: a systematic review and a bivariate meta-analysis. Diagnostics (Basel) 2019; 9 (02) 60
  • 157 Okazaki T, Nakagawa H, Yagi K, Hayase H, Nagahiro S, Saito K. Bone scintigraphy for the diagnosis of the responsible level of osteoporotic vertebral compression fractures in percutaneous balloon kyphoplasty. Clin Neurol Neurosurg 2017; 152: 23-27
  • 158 Matcuk Jr GR, Mahanty SR, Skalski MR, Patel DB, White EA, Gottsegen CJ. Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg Radiol 2016; 23 (04) 365-375
  • 159 Fan C, Hernandez-Pampaloni M, Houseni M. et al. Age-related changes in the metabolic activity and distribution of the red marrow as demonstrated by 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography. Mol Imaging Biol 2007; 9 (05) 300-307
  • 160 Agool A, Glaudemans AWJM, Boersma HH, Dierckx RAJO, Vellenga E, Slart RHJA. Radionuclide imaging of bone marrow disorders. Eur J Nucl Med Mol Imaging 2011; 38 (01) 166-178
  • 161 Murata Y, Kubota K, Yukihiro M, Ito K, Watanabe H, Shibuya H. Correlations between 18F-FDG uptake by bone marrow and hematological parameters: measurements by PET/CT. Nucl Med Biol 2006; 33 (08) 999-1004
  • 162 Malla S, Razik A, Das CJ, Naranje P, Kandasamy D, Kumar R. Marrow outside marrow: imaging of extramedullary haematopoiesis. Clin Radiol 2020; 75 (08) 565-578
  • 163 Gosewisch A, Ilhan H, Tattenberg S. et al. 3D Monte Carlo bone marrow dosimetry for Lu-177-PSMA therapy with guidance of non-invasive 3D localization of active bone marrow via Tc-99m-anti-granulocyte antibody SPECT/CT. EJNMMI Res 2019; 9 (01) 76