Subscribe to RSS

DOI: 10.1055/s-0043-1764218
Application of Chiral Piperidine Scaffolds in Drug Design
Funding We gratefully acknowledge financial supports from the National Science and Technology Major Project (Grant No. 2018ZX09711002-002-009), the National Natural Science Foundation of China (Grant No. 81703358), the Science and Technology Commission of Shanghai Municipality (Grant No. 17431903900, 18QB1404200, 21S11908000, 22ZR1460300), and the Graduate Innovation Fund Project of China State Institute of Pharmaceutical Industry (Grant No. YJS2021013, YJS2021011).

Abstract
Chiral piperidine scaffolds are prevalent as the common cores of a large number of active pharmaceuticals in medical chemistry. This review outlined the diversity of chiral piperidine scaffolds in recently approved drugs, and also covers the scaffolds in leads and drug candidates. The significance of chiral piperidine scaffolds in drug design is also discussed in this article. With the introduction of chiral piperidine scaffolds into small molecules, the exploration of drug-like molecules can be benefitted from the following aspect: (1) modulating the physicochemical properties; (2) enhancing the biological activities and selectivity; (3) improving pharmacokinetic properties; and (4) reducing the cardiac hERG toxicity. Given above, chiral piperidine-based discovery of small molecules will be a promising strategy to enrich our molecules' library to fight against diseases.
Keywords
chiral piperidine scaffolds - drug-like - drug molecules - drug design - medicinal chemistryPublication History
Received: 28 July 2022
Accepted: 26 January 2023
Article published online:
15 March 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Reference
- 1 Laplante SRD, D Fader L, Fandrick KR. et al. Assessing atropisomer axial chirality in drug discovery and development. J Med Chem 2011; 54 (20) 7005-7022
- 2 Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 2014; 57 (24) 10257-10274
- 3 Silvestri IP, Colbon PJJ. The growing importance of chirality in 3D chemical space exploration and modern drug discovery approaches for Hit-ID: topical innovations. ACS Med Chem Lett 2021; 12 (08) 1220-1229
- 4 Bhutani P, Joshi G, Raja N. et al. U.S. FDA approved drugs from 2015-June 2020: a perspective. J Med Chem 2021; 64 (05) 2339-2381
- 5 Kumorkiewicz-Jamro A, Świergosz T, Sutor K, Spórna-Kucab A, Wybraniec S. Multi-colored shades of betalains: recent advances in betacyanin chemistry. Nat Prod Rep 2021; 38 (12) 2315-2346
- 6 Shan C, Xu J, Cao L. et al. Rapid synthesis of α-chiral piperidines via a highly diastereoselective continuous flow protocol. Org Lett 2022; 24 (17) 3205-3210
- 7 Akamatsu M. Importance of physicochemical properties for the design of new pesticides. J Agric Food Chem 2011; 59 (07) 2909-2917
- 8 Ndungu JM, Krumm SA, Yan D. et al. Non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase: synthesis, structure-activity relationships, and pharmacokinetics. J Med Chem 2012; 55 (09) 4220-4230
- 9 de Castro Fonseca M, Aguiar CJ, da Rocha Franco JA, Gingold RN, Leite MF. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal 2016; 14: 3
- 10 Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci 2016; 41 (05) 460-471
- 11 Tannahill GM, Curtis AM, Adamik J. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013; 496 (7444): 238-242
- 12 Velcicky J, Wilcken R, Cotesta S. et al. Discovery and optimization of novel SUCNR1 inhibitors: design of zwitterionic derivatives with a salt bridge for the improvement of oral exposure. J Med Chem 2020; 63 (17) 9856-9875
- 13 Udvarhelyi A, Rodde S, Wilcken R. ReSCoSS: a flexible quantum chemistry workflow identifying relevant solution conformers of drug-like molecules. J Comput Aided Mol Des 2021; 35 (04) 399-415
- 14 Nadimetla DN, Al Kobaisi M, Bugde ST, Bhosale SV. Tuning achiral to chiral supramolecular helical superstructures. Chem Rec 2020; 20 (08) 793-819
- 15 Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 2009; 52 (21) 6752-6756
- 16 Wu S, Cai W, Shi Z. et al. Knockdown of MTHFD2 inhibits proliferation and migration of nasopharyngeal carcinoma cells through the ERK signaling pathway. Biochem Biophys Res Commun 2022; 614: 47-55
- 17 Xing M, Yang Y, Huang J. et al. TFPI inhibits breast cancer progression by suppressing ERK/p38 MAPK signaling pathway. Genes Genomics 2022; 44 (07) 801-812
- 18 Poddutoori R, Aardalen K, Aithal K. et al. Discovery of MAP855, an efficacious and selective MEK1/2 inhibitor with an ATP-competitive mode of action. J Med Chem 2022; 65 (05) 4350-4366
- 19 Mainolfi N, Ehara T, Karki RG. et al. Discovery of 4-((2S,4S)-4-ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl)benzoic acid (LNP023), a factor B inhibitor specifically designed to be applicable to treating a diverse array of complement mediated diseases. J Med Chem 2020; 63 (11) 5697-5722
- 20 Calderon-González KG, Medina-Medina I, Haronikova L. et al. Cryptic in vitro ubiquitin ligase activity of HDMX towards p53 is probably regulated by an induced fit mechanism. Biosci Rep 2022; 42 (07) BSR20220186
- 21 Ma Y, Lahue BR, Gibeau CR. et al. Pivotal role of an aliphatic side chain in the development of an HDM2 inhibitor. ACS Med Chem Lett 2014; 5 (05) 572-575
- 22 Vassilev LT, Vu BT, Graves B. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303 (5659): 844-848
- 23 Rutaganira FU, Barks J, Dhason MS. et al. Inhibition of calcium dependent protein kinase 1 (CDPK1) by pyrazolopyrimidine analogs decreases establishment and reoccurrence of central nervous system disease by Toxoplasma gondii. J Med Chem 2017; 60 (24) 9976-9989
- 24 Graaf Cd, Donnelly D, Wootten D. et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev 2016; 68 (04) 954-1013
- 25 Decara JM, Vázquez-Villa H, Brea J. et al. Discovery of V-0219: a small-molecule positive allosteric modulator of the glucagon-like peptide-1 receptor toward oral treatment for “diabesity”. J Med Chem 2022; 65 (07) 5449-5461
- 26 Humphreys PG, Bamborough P, Chung CW. et al. Discovery of a potent, cell penetrant, and selective p300/CBP-associated factor (PCAF)/general control nonderepressible 5 (GCN5) bromodomain chemical probe. J Med Chem 2017; 60 (02) 695-709
- 27 Huang L, Li H, Li L. et al. Discovery of pyrrolo[3,2- d]pyrimidin-4-one derivatives as a new class of potent and cell-active inhibitors of P300/CBP-associated factor bromodomain. J Med Chem 2019; 62 (09) 4526-4542
- 28 Lee S, Lee JS. Cellular senescence: a promising strategy for cancer therapy. BMB Rep 2019; 52 (01) 35-41
- 29 Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21 (01) 94-101
- 30 Oh S, Kwon DY, Choi I. et al. Identification of piperidine-3-carboxamide derivatives inducing senescence-like phenotype with antimelanoma activities. ACS Med Chem Lett 2021; 12 (04) 563-571
- 31 Basarab GS, Hill PJ, Garner CE. et al. Optimization of pyrrolamide topoisomerase II inhibitors toward identification of an antibacterial clinical candidate (AZD5099). J Med Chem 2014; 57 (14) 6060-6082
- 32 Karlsson S, Pettersen D, Sörensen H. AZD6564, discovery of a potent 5-substituted isoxazol-3-ol fibrinolysis inhibitor and development of an enantioselective large-scale route for its preparation. ACS Symposium Series 2018; 1307: 151-184
- 33 Shen J, Zhang T, Zhu SJ. et al. Structure-based design of 5-methylpyrimidopyridone derivatives as new wild-type sparing inhibitors of the epidermal growth factor receptor triple mutant (EGFRL858R/T790M/C797S). J Med Chem 2019; 62 (15) 7302-7308
- 34 Zhang X, Sheng X, Shen J. et al. Discovery and evaluation of pyrazolo[3,4-d]pyridazinone as a potent and orally active irreversible BTK inhibitor. ACS Med Chem Lett 2019; 11 (10) 1863-1868
- 35 Tichenor MS, Wiener JJM, Rao NL. et al. Discovery of JNJ-64264681: a potent and selective covalent inhibitor of Bruton's tyrosine kinase. J Med Chem 2022; 65 (21) 14326-14336
- 36 Liu J, Guiadeen D, Krikorian A. et al. Discovery of 8-amino-imidazo[1,5-a]pyrazines as reversible BTK inhibitors for the treatment of rheumatoid arthritis. ACS Med Chem Lett 2015; 7 (02) 198-203
- 37 Watterson SH, Liu Q, Beaudoin Bertrand M. et al. Discovery of Branebrutinib (BMS-986195): a strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of Bruton's tyrosine kinase (BTK). J Med Chem 2019; 62 (07) 3228-3250
- 38 Yang B, Vasbinder MM, Hird AW. et al. Adventures in scaffold morphing: discovery of fused ring heterocyclic checkpoint kinase 1 (CHK1) inhibitors. J Med Chem 2018; 61 (03) 1061-1073
- 39 Hicken EJ, Marmsater FP, Munson MC. et al. Discovery of a novel class of imidazo[1,2-a]pyridines with potent PDGFR activity and oral bioavailability. ACS Med Chem Lett 2013; 5 (01) 78-83
- 40 Zhang X, Mao J, Wei M, Qi Y, Zhang JZH. HergSPred: accurate classification of hERG blockers/nonblockers with machine-learning models. J Chem Inf Model 2022; 62 (08) 1830-1839
- 41 Asahi Y, Nomura F, Abe Y. et al. Electrophysiological evaluation of pentamidine and 17-AAG in human stem cell-derived cardiomyocytes for safety assessment. Eur J Pharmacol 2019; 842: 221-230
- 42 Sharifi M. Computational approaches to understand the adverse drug effect on potassium, sodium and calcium channels for predicting TdP cardiac arrhythmias. J Mol Graph Model 2017; 76: 152-160
- 43 Blum CA, Zheng X, De Lombaert S. Design, synthesis, and biological evaluation of substituted 2-cyclohexyl-4-phenyl-1H-imidazoles: potent and selective neuropeptide Y Y5-receptor antagonists. J Med Chem 2004; 47 (09) 2318-2325
- 44 Rampe D, Wible B, Brown AM, Dage RC. Effects of terfenadine and its metabolites on a delayed rectifier K+ channel cloned from human heart. Mol Pharmacol 1993; 44 (06) 1240-1245
- 45 Ganellin R, Roberts S, Jefferies R. Introduction to Biological and Small Molecule Drug Research and Development: Theory and Case Studies. Amsterdam: Academic Press; 2013
- 46 Tschirhart JN, Zhang S. Fentanyl-induced block of hERG channels is exacerbated by hypoxia, hypokalemia, alkalosis, and the presence of hERG1b. Mol Pharmacol 2020; 98 (04) 508-517
- 47 Uko NE, Güner OF, Matesic DF, Bowen JP. Akt pathway inhibitors. Curr Top Med Chem 2020; 20 (10) 883-900
- 48 Dong X, Zhan W, Zhao M. et al. Discovery of 3,4,6-trisubstituted piperidine derivatives as orally active, low hERG blocking Akt inhibitors via conformational restriction and structure-based design. J Med Chem 2019; 62 (15) 7264-7288
- 49 Reck F, Alm RA, Brassil P. et al. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced pK(a): antibacterial agents with an improved safety profile. J Med Chem 2012; 55 (15) 6916-6933
- 50 Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov 2002; 1 (08) 621-636
- 51 Skeggs Jr LT, Kahn JR, Lentz K, Shumway NP. The preparation, purification, and amino acid sequence of a polypeptide renin substrate. J Exp Med 1957; 106 (03) 439-453
- 52 Ehara T, Irie O, Kosaka T. et al. Structure-based design of substituted piperidines as a new class of highly efficacious oral direct Renin inhibitors. ACS Med Chem Lett 2014; 5 (07) 787-792
- 53 Gao Y, Zhao X, Sun X. et al. Enantioselective detection, bioactivity, and degradation of the novel chiral fungicide oxathiapiprolin. J Agric Food Chem 2021; 69 (11) 3289-3297
- 54 Saha D, Kharbanda A, Yan W, Lakkaniga NR, Frett B, Li HY. The exploration of chirality for improved druggability within the human kinome. J Med Chem 2020; 63 (02) 441-469
- 55 Feng PF, Zhang B, Zhao L. et al. Intracellular mechanism of rosuvastatin-induced decrease in mature hERG protein expression on membrane. Mol Pharm 2019; 16 (04) 1477-1488