Clin Colon Rectal Surg 2024; 37(03): 172-179
DOI: 10.1055/s-0043-1770384
Review Article

Chemoprevention in Inherited Colorectal Cancer Syndromes

Ophir Gilad
1   Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
,
Charles Muller
2   Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois
,
Sonia S. Kupfer
1   Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
› Author Affiliations
Funding S.S.K received funding for this study from National Institutes of Health (NIH)/NCL. (Grant no.: R01 CA220329).

Abstract

Cancer prevention in hereditary gastrointestinal predisposition syndromes relies primarily on intensive screening (e.g., colonoscopy) or prophylactic surgery (e.g., colectomy). The use of chemopreventive agents as an adjunct to these measures has long been studied both in the general population and in hereditary cancer patients, in whom the risk of malignancy, and therefore the potential risk reduction, is considerably greater. However, to date only few compounds have been found to be effective, safe, and tolerable for widespread use. Furthermore, many of the studies involving these rare syndromes suffer from small sample sizes, heterogeneous patient cohorts, short follow-up duration, and lack of standardized endpoints, creating challenges to draw generalizable conclusion regarding efficacy. The following review summarizes the current data on various chemopreventive compounds used in Lynch syndrome and familial adenomatous polyposis in addition to several agents that are currently being investigated.



Publication History

Article published online:
19 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lynch PM. Chemoprevention of familial adenomatous polyposis. Fam Cancer 2016; 15 (03) 467-475
  • 2 Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW. American College of Gastroenterology. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 2015; 110 (02) 223-262 , quiz 263
  • 3 Perchiniak EM, Groden J. Mechanisms regulating microtubule binding, DNA replication, and apoptosis are controlled by the intestinal tumor suppressor APC. Curr Colorectal Cancer Rep 2011; 7 (02) 145-151
  • 4 Leber MF, Efferth T. Molecular principles of cancer invasion and metastasis (review). (Review) Int J Oncol 2009; 34 (04) 881-895
  • 5 Reyes-Uribe L, Wu W, Gelincik O. et al. Naproxen chemoprevention promotes immune activation in Lynch syndrome colorectal mucosa. Gut 2021; 70 (03) 555-566
  • 6 Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 2007; 356 (21) 2131-2142
  • 7 Rüschoff J, Wallinger S, Dietmaier W. et al. Aspirin suppresses the mutator phenotype associated with hereditary nonpolyposis colorectal cancer by genetic selection. Proc Natl Acad Sci U S A 1998; 95 (19) 11301-11306
  • 8 McIlhatton MA, Tyler J, Burkholder S. et al. Nitric oxide-donating aspirin derivatives suppress microsatellite instability in mismatch repair-deficient and hereditary nonpolyposis colorectal cancer cells. Cancer Res 2007; 67 (22) 10966-10975
  • 9 Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer 2010; 10 (03) 181-193
  • 10 Maxwell PH. Tumor strengths and frailties: aspiring to prevent colon cancer. Nat Med 2012; 18 (01) 32-33
  • 11 Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107 (04) 1183-1188
  • 12 Baron JA, Cole BF, Sandler RS. et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 2003; 348 (10) 891-899
  • 13 Bertagnolli MM, Eagle CJ, Zauber AG. et al; APC Study Investigators. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 2006; 355 (09) 873-884
  • 14 Davidson KW, Barry MJ, Mangione CM. et al; US Preventive Services Task Force. Aspirin use to prevent cardiovascular disease: US Preventive Services Task Force recommendation statement. JAMA 2022; 327 (16) 1577-1584
  • 15 Burn J, Bishop DT, Chapman PD. et al; International CAPP consortium. A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis. Cancer Prev Res (Phila) 2011; 4 (05) 655-665
  • 16 Ishikawa H, Wakabayashi K, Suzuki S. et al. Preventive effects of low-dose aspirin on colorectal adenoma growth in patients with familial adenomatous polyposis: double-blind, randomized clinical trial. Cancer Med 2013; 2 (01) 50-56
  • 17 Rothwell PM, Wilson M, Elwin CE. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010; 376 (9754): 1741-1750
  • 18 Cuzick J, Otto F, Baron JA. et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 2009; 10 (05) 501-507
  • 19 Labayle D, Fischer D, Vielh P. et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 1991; 101 (03) 635-639
  • 20 Cruz-Correa M, Hylind LM, Romans KE, Booker SV, Giardiello FM. Long-term treatment with sulindac in familial adenomatous polyposis: a prospective cohort study. Gastroenterology 2002; 122 (03) 641-645
  • 21 Tonelli F, Valanzano R, Messerini L, Ficari F. Long-term treatment with sulindac in familial adenomatous polyposis: is there an actual efficacy in prevention of rectal cancer?. J Surg Oncol 2000; 74 (01) 15-20
  • 22 Giardiello FM, Yang VW, Hylind LM. et al. Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 2002; 346 (14) 1054-1059
  • 23 Piazza GA, Alberts DS, Hixson LJ. et al. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res 1997; 57 (14) 2909-2915
  • 24 Thompson WJ, Piazza GA, Li H. et al. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. Cancer Res 2000; 60 (13) 3338-3342
  • 25 Arber N, Kuwada S, Leshno M, Sjodahl R, Hultcrantz R, Rex D. Exisulind Study Group. Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study. Gut 2006; 55 (03) 367-373
  • 26 Sharman SK, Islam BN, Hou Y. et al. Cyclic-GMP-elevating agents suppress polyposis in Apc Min mice by targeting the preneoplastic epithelium. Cancer Prev Res (Phila) 2018; 11 (02) 81-92
  • 27 Steinbach G, Lynch PM, Phillips RK. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 342 (26) 1946-1952
  • 28 Lynch PM, Ayers GD, Hawk E. et al. The safety and efficacy of celecoxib in children with familial adenomatous polyposis. Am J Gastroenterol 2010; 105 (06) 1437-1443
  • 29 Burke CA, Phillips R, Berger MF. et al. Children's International Polyposis (CHIP) study: a randomized, double-blind, placebo-controlled study of celecoxib in children with familial adenomatous polyposis. Clin Exp Gastroenterol 2017; 10: 177-185
  • 30 Phillips RKS, Wallace MH, Lynch PM. et al; FAP Study Group. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 2002; 50 (06) 857-860
  • 31 Schiffmann S, Maier TJ, Wobst I. et al. The anti-proliferative potency of celecoxib is not a class effect of coxibs. Biochem Pharmacol 2008; 76 (02) 179-187
  • 32 Hallak A, Alon-Baron L, Shamir R. et al. Rofecoxib reduces polyp recurrence in familial polyposis. Dig Dis Sci 2003; 48 (10) 1998-2002
  • 33 Higuchi T, Iwama T, Yoshinaga K, Toyooka M, Taketo MM, Sugihara K. A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin Cancer Res 2003; 9 (13) 4756-4760
  • 34 Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem 2020; 208: 112820
  • 35 Fujishita T, Aoki K, Lane HA, Aoki M, Taketo MM. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc Natl Acad Sci U S A 2008; 105 (36) 13544-13549
  • 36 Yuksekkaya H, Yucel A, Gumus M, Esen H, Toy H. Familial adenomatous polyposis; successful use of sirolimus. Am J Gastroenterol 2016; 111 (07) 1040-1041
  • 37 Roos VH, Meijer BJ, Kallenberg FGJ. et al. Sirolimus for the treatment of polyposis of the rectal remnant and ileal pouch in four patients with familial adenomatous polyposis: a pilot study. BMJ Open Gastroenterol 2020; 7 (01) e000497
  • 38 Shihab F, Christians U, Smith L, Wellen JR, Kaplan B. Focus on mTOR inhibitors and tacrolimus in renal transplantation: pharmacokinetics, exposure-response relationships, and clinical outcomes. Transpl Immunol 2014; 31 (01) 22-32
  • 39 Hasty P, Livi CB, Dodds SG. et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila) 2014; 7 (01) 169-178
  • 40 National Library of Medicine. Trial of eRapa to Prevent Progression in Familial Adenomatous Polyposis Patients Under Active Surveillance. NCT04230499. U.S. National Library of Medicine
  • 41 Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985; 13 (17) 6265-6272
  • 42 Lee HLR, Dougherty JP. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther 2012; 136 (02) 227-266
  • 43 Kariv R, Caspi M, Fliss-Isakov N. et al. Resorting the function of the colorectal cancer gatekeeper adenomatous polyposis coli. Int J Cancer 2020; 146 (04) 1064-1074
  • 44 Park CH, Hahm ER, Park S, Kim HK, Yang CH. The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 2005; 579 (13) 2965-2971
  • 45 Girardi B, Pricci M, Giorgio F. et al. Silymarin, boswellic acid and curcumin enriched dietetic formulation reduces the growth of inherited intestinal polyps in an animal model. World J Gastroenterol 2020; 26 (14) 1601-1612
  • 46 Cruz-Correa M, Shoskes DA, Sanchez P. et al. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 2006; 4 (08) 1035-1038
  • 47 Cruz-Correa M, Hylind LM, Marrero JH. et al. Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology 2018; 155 (03) 668-673
  • 48 Kromhout D. The importance of N-6 and N-3 fatty acids in carcinogenesis. Med Oncol Tumor Pharmacother 1990; 7 (2-3): 173-176
  • 49 Calviello G, Serini S, Piccioni E. n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem 2007; 14 (29) 3059-3069
  • 50 West NJ, Clark SK, Phillips RKS. et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut 2010; 59 (07) 918-925
  • 51 Gerner EW, Meyskens Jr FLJ. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 2004; 4 (10) 781-792
  • 52 Giardiello FM, Hamilton SR, Hylind LM, Yang VW, Tamez P, Casero Jr RAJ. Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res 1997; 57 (02) 199-201
  • 53 Lynch PM, Burke CA, Phillips R. et al. An international randomised trial of celecoxib versus celecoxib plus difluoromethylornithine in patients with familial adenomatous polyposis. Gut 2016; 65 (02) 286-295
  • 54 Coffey RJ, Hawkey CJ, Damstrup L. et al. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells. Proc Natl Acad Sci U S A 1997; 94 (02) 657-662
  • 55 Samadder NJ, Neklason DW, Boucher KM. et al. Effect of sulindac and erlotinib vs placebo on duodenal neoplasia in familial adenomatous polyposis: a randomized clinical trial. JAMA 2016; 315 (12) 1266-1275
  • 56 Ulusan AM, Rajendran P, Dashwood WM. et al. Optimization of erlotinib plus sulindac dosing regimens for intestinal cancer prevention in an APC-mutant model of familial adenomatous polyposis (FAP). Cancer Prev Res (Phila) 2021; 14 (03) 325-336
  • 57 Velayos FS, Terdiman JP, Walsh JM. Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: a systematic review and metaanalysis of observational studies. Am J Gastroenterol 2005; 100 (06) 1345-1353
  • 58 Ishikawa H, Mutoh M, Abe T. et al. Utility of mesalazine in familial adenomatous polyposis: clinical report of reduction of polyp size in patients with ulcerative colitis, and safety examination in familial adenomatous polyposis patients. Pharmacology 2019; 104 (1-2): 51-56
  • 59 Ishikawa H, Mutoh M, Sato Y. et al. Chemoprevention with low-dose aspirin, mesalazine, or both in patients with familial adenomatous polyposis without previous colectomy (J-FAPP Study IV): a multicentre, double-blind, randomised, two-by-two factorial design trial. Lancet Gastroenterol Hepatol 2021; 6 (06) 474-481
  • 60 Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology 2010; 138 (06) 2044-2058
  • 61 Bonadona V, Bonaïti B, Olschwang S. et al; French Cancer Genetics Network. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 2011; 305 (22) 2304-2310
  • 62 Giannakis M, Mu XJ, Shukla SA. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep 2016; 17 (04) 1206
  • 63 Møller P, Seppälä TT, Bernstein I. et al; Mallorca Group. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut 2018; 67 (07) 1306-1316
  • 64 Burn J, Gerdes AM, Macrae F. et al; CAPP2 Investigators. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 2011; 378 (9809): 2081-2087
  • 65 Ait Ouakrim D, Dashti SG, Chau R. et al. Aspirin, ibuprofen, and the risk of colorectal cancer in Lynch syndrome. J Natl Cancer Inst 2015; 107 (09) djv170
  • 66 Burn J, Bishop DT, Mecklin JP. et al; CAPP2 Investigators. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N Engl J Med 2008; 359 (24) 2567-2578
  • 67 Mathers JC, Elliott F, Macrae F. et al; CAPP2 Investigators. Cancer prevention with resistant starch in Lynch syndrome patients in the CAPP2-randomized placebo controlled trial: planned 10-year follow-up. Cancer Prev Res (Phila) 2022; 15 (09) 623-634
  • 68 Burn J, Sheth H, Elliott F. et al; CAPP2 Investigators. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet 2020; 395 (10240): 1855-1863
  • 69 Movahedi M, Bishop DT, Macrae F. et al. Obesity, aspirin, and risk of colorectal cancer in carriers of hereditary colorectal cancer: a prospective investigation in the CAPP2 study. J Clin Oncol 2015; 33 (31) 3591-3597
  • 70 Schwitalle Y, Kloor M, Eiermann S. et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 2008; 134 (04) 988-997
  • 71 Gebert J, Gelincik O, Oezcan-Wahlbrink M. et al. Recurrent frameshift neoantigen vaccine elicits protective immunity with reduced tumor burden and improved overall survival in a Lynch syndrome mouse model. Gastroenterology 2021; 161 (04) 1288-1302.e13