CC BY 4.0 · Indian Journal of Neurosurgery 2023; 12(02): 116-131
DOI: 10.1055/s-0043-1771214
Review Article

Connectomic Networks and Their Impact on Clinical Outcomes in Glioma Treatment: A Review

1   Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, United States
,
Emma R. Earl
2   School of Medicine, University of Utah, Salt Lake City, Utah, United States
,
Jaden B. Brooks
2   School of Medicine, University of Utah, Salt Lake City, Utah, United States
,
3   School of Medicine, University of Nevada, Reno, Nevada, United States
,
4   School of Medicine, Rutgers Robert Wood Johnson, New Brunswick, New Jersey, United States
,
Michael E. Sughrue
5   Department of Neurosurgery, Prince of Wales Hospital, Randwick, New South Wales, Australia
,
1   Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, United States
6   Global Neurosciences Institute, Upland, Pennsylvania, United States
7   Department of Neurosurgery, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
› Author Affiliations

Abstract

The emerging field of connectomics has provided an improved understanding of the structural and functional organization of the human brain into large-scale brain networks. Recent studies have helped define the canonical neurological networks and outline how considering their presence may aid in surgical decision-making in brain tumor patients. Gliomas represent one of the most common types of brain tumor and often involve displacement and/or infiltration of neurological pathways, suggesting an opportunity to use connectomic maps to improve patient morbidity and mortality based on oncofunctional goals. This review aims to provide a working knowledge of important neurological networks, examine the use of networks in surgical planning, and describe the current literature discussing the impact of these networks on clinical outcomes in glioma resection.



Publication History

Article published online:
24 July 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: a systematic review. Front Oncol 2022; 12: 943600
  • 2 Sughrue M. What is Connectomics?. Accessed November 01, 2022 at: https://www.o8t.com/blog/connectomics . Published 2022
  • 3 Shah HA, Mehta NH, Saleem MI, D'Amico RS. Connecting the connectome: a bibliometric investigation of the 50 most cited articles. Clin Neurol Neurosurg 2022; 223: 107481
  • 4 Fan Q, Eichner C, Afzali M. et al. Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact. Neuroimage 2022; 254: 118958
  • 5 Dadario NB, Sughrue ME. Should neurosurgeons try to preserve non-traditional brain networks? A systematic review of the neuroscientific evidence. J Pers Med 2022; 12 (04) 587
  • 6 Shahab QS, Young IM, Dadario NB. et al. A connectivity model of the anatomic substrates underlying Gerstmann syndrome. Brain Commun 2022; 4 (03) fcac140
  • 7 Poologaindran A, Profyris C, Young IM. et al. Interventional neurorehabilitation for promoting functional recovery post-craniotomy: a proof-of-concept. Sci Rep 2022; 12 (01) 3039
  • 8 Raichle ME. The brain's default mode network. Annu Rev Neurosci 2015; 38: 433-447
  • 9 Horn A, Ostwald D, Reisert M, Blankenburg F. The structural-functional connectome and the default mode network of the human brain. Neuroimage 2014; 102 (Pt 1): 142-151
  • 10 Fair DA, Cohen AL, Dosenbach NU. et al. The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 2008; 105 (10) 4028-4032
  • 11 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001; 98 (02) 676-682
  • 12 Spreng RN. The fallacy of a “task-negative” network. Front Psychol 2012; 3: 145
  • 13 Elton A, Gao W. Task-positive functional connectivity of the default mode network transcends task domain. J Cogn Neurosci 2015; 27 (12) 2369-2381
  • 14 Vatansever D, Manktelow A, Sahakian BJ, Menon DK, Stamatakis EA. Default mode network engagement beyond self-referential internal mentation. Brain Connect 2018; 8 (04) 245-253
  • 15 Crittenden BM, Mitchell DJ, Duncan J. Recruitment of the default mode network during a demanding act of executive control. eLife 2015; 4: e06481
  • 16 Aguilar DD, McNally JM. Subcortical control of the default mode network: role of the basal forebrain and implications for neuropsychiatric disorders. Brain Res Bull 2022; 185: 129-139
  • 17 Mohan A, Roberto AJ, Mohan A. et al. The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: a review. Yale J Biol Med 2016; 89 (01) 49-57
  • 18 Tanglay O, Young IM, Dadario NB. et al. Anatomy and white-matter connections of the precuneus. Brain Imaging Behav 2022; 16 (02) 574-586
  • 19 Li W, Mai X, Liu C. The default mode network and social understanding of others: what do brain connectivity studies tell us. Front Hum Neurosci 2014; 8: 74
  • 20 Molnar-Szakacs I, Uddin LQ. Self-processing and the default mode network: interactions with the mirror neuron system. Front Hum Neurosci 2013; 7: 571
  • 21 Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124 (01) 1-38
  • 22 Buckner RL, DiNicola LM. The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci 2019; 20 (10) 593-608
  • 23 Sporns O. The human connectome: a complex network. Ann N Y Acad Sci 2011; 1224 (01) 109-125
  • 24 Morell AA, Eichberg DG, Shah AH. et al. Using machine learning to evaluate large-scale brain networks in patients with brain tumors: traditional and non-traditional eloquent areas. Neurooncol Adv 2022; 4 (01) vdac142
  • 25 Zhang H, Shi Y, Yao C. et al. Alteration of the intra- and cross- hemisphere posterior default mode network in frontal lobe glioma patients. Sci Rep 2016; 6: 26972
  • 26 Lin YH, Dadario NB, Hormovas J. et al. Anatomy and white matter connections of the superior parietal lobule. Oper Neurosurg (Hagerstown) 2021; 21 (03) E199-E214
  • 27 Briggs RG, Tanglay O, Dadario NB. et al. The unique fiber anatomy of middle temporal gyrus default mode connectivity. Oper Neurosurg (Hagerstown) 2021; 21 (01) E8-E14
  • 28 Kocher M, Jockwitz C, Caspers S. et al. Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. Neuroimage Clin 2020; 27: 102287
  • 29 Stephens TM, Young IM, O'Neal CM. et al. Akinetic mutism reversed by inferior parietal lobule repetitive theta burst stimulation: Can we restore default mode network function for therapeutic benefit?. Brain Behav 2021; 11 (08) e02180
  • 30 Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011; 15 (10) 483-506
  • 31 Littow H, Huossa V, Karjalainen S. et al. Aberrant functional connectivity in the default mode and central executive networks in subjects with schizophrenia – a whole-brain resting-state ICA study. Front Psychiatry 2015; 6: 26
  • 32 Qiu C, Liao W, Ding J. et al. Regional homogeneity changes in social anxiety disorder: a resting-state fMRI study. Psychiatry Res 2011; 194 (01) 47-53
  • 33 Chen Y, Meng X, Hu Q. et al. Altered resting-state functional organization within the central executive network in obsessive-compulsive disorder. Psychiatry Clin Neurosci 2016; 70 (10) 448-456
  • 34 Ryan NP, Catroppa C, Hughes N. et al. Executive function mediates the prospective association between neurostructural differences within the central executive network and anti-social behavior after childhood traumatic brain injury. J Child Psychol Psychiatry 2021; 62 (09) 1150-1161
  • 35 Jukuri T, Kiviniemi V, Nikkinen J. et al. Central executive network in young people with familial risk for psychosis – the Oulu Brain and Mind Study. Schizophr Res 2015; 161 (2-3): 177-183
  • 36 Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 2008; 100 (06) 3328-3342
  • 37 Dosenbach NU, Visscher KM, Palmer ED. et al. A core system for the implementation of task sets. Neuron 2006; 50 (05) 799-812
  • 38 Uddin LQ, Yeo BTT, Spreng RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr 2019; 32 (06) 926-942
  • 39 Madole JW, Ritchie SJ, Cox SR. et al. Aging-sensitive networks within the human structural connectome are implicated in late-life cognitive declines. Biol Psychiatry 2021; 89 (08) 795-806
  • 40 Zhang X, Zhang G, Wang Y. et al. Alteration of default mode network: association with executive dysfunction in frontal glioma patients. J Neurosurg 2022; •••: 1-10
  • 41 Schouwenaars IT, de Dreu MJ, Rutten GM, Ramsey NF, Jansma JM. A functional MRI study of presurgical cognitive deficits in glioma patients. Neurooncol Pract 2020; 8 (01) 81-90
  • 42 Cai W, Chen T, Szegletes L, Supekar K, Menon V. Aberrant time-varying cross-network interactions in children with attention-deficit/hyperactivity disorder and the relation to attention deficits. Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3 (03) 263-273
  • 43 Teper R, Segal ZV, Inzlicht M. Inside the mindful mind: how mindfulness enhances emotion regulation through improvements in executive control. Curr Dir Psychol Sci 2013; 22 (06) 449-454
  • 44 Bremer B, Wu Q, Mora Álvarez MG. et al. Mindfulness meditation increases default mode, salience, and central executive network connectivity. Sci Rep 2022; 12 (01) 13219
  • 45 Abdallah CG, Averill CL, Ramage AE. et al; STRONG STAR Consortium. Reduced salience and enhanced central executive connectivity following PTSD treatment. Chronic Stress (Thousand Oaks) 2019; 3: 2470547019838971
  • 46 Ge R, Downar J, Blumberger DM, Daskalakis ZJ, Lam RW, Vila-Rodriguez F. Structural network integrity of the central executive network is associated with the therapeutic effect of rTMS in treatment resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92: 217-225
  • 47 Liu L, Zhang H, Rekik I, Chen X, Wang Q, Shen D. Outcome prediction for patient with high-grade gliomas from brain functional and structural networks. Med Image Comput Comput Assist Interv 2016; 9901: 26-34
  • 48 Cochereau J, Lemaitre AL, Wager M, Moritz-Gasser S, Duffau H, Herbet G. Network-behavior mapping of lasting executive impairments after low-grade glioma surgery. Brain Struct Funct 2020; 225 (08) 2415-2429
  • 49 Seeley WW, Menon V, Schatzberg AF. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27 (09) 2349-2356
  • 50 Briggs RG, Young IM, Dadario NB. et al. Parcellation-based tractographic modeling of the salience network through meta-analysis. Brain Behav 2022; 12 (07) e2646
  • 51 Chand GB, Wu J, Hajjar I, Qiu D. Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment. Brain Connect 2017; 7 (07) 401-412
  • 52 Goulden N, Khusnulina A, Davis NJ. et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage 2014; 99: 180-190
  • 53 Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 2015; 16 (01) 55-61
  • 54 O'Neill A, Mechelli A, Bhattacharyya S. Dysconnectivity of large-scale functional networks in early psychosis: a meta-analysis. Schizophr Bull 2019; 45 (03) 579-590
  • 55 Watson KK, Jones TK, Allman JM. Dendritic architecture of the von Economo neurons. Neuroscience 2006; 141 (03) 1107-1112
  • 56 Allman JM, Watson KK, Tetreault NA, Hakeem AY. Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci 2005; 9 (08) 367-373
  • 57 Uddin LQ, Supekar KS, Ryali S, Menon V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J Neurosci 2011; 31 (50) 18578-18589
  • 58 Manoliu A, Riedl V, Zherdin A. et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr Bull 2014; 40 (02) 428-437
  • 59 Palmisciano P, Haider AS, Balasubramanian K. et al. Supplementary motor area syndrome after brain tumor surgery: a systematic review. World Neurosurg 2022; 165: 160-171.e2
  • 60 Dadario NB, Tabor JK, Silverstein J, Sun XR, DAmico RS. Postoperative focal lower extremity supplementary motor area syndrome: case report and review of the literature. Neurodiagn J 2021; 61 (04) 169-185
  • 61 Briggs RG, Allan PG, Poologaindran A. et al. The frontal aslant tract and supplementary motor area syndrome: moving towards a connectomic initiation axis. Cancers (Basel) 2021; 13 (05) 1116
  • 62 Baker CM, Burks JD, Briggs RG. et al. The crossed frontal aslant tract: a possible pathway involved in the recovery of supplementary motor area syndrome. Brain Behav 2018; 8 (03) e00926
  • 63 Tuncer MS, Fekonja LS, Ott S. et al. Role of interhemispheric connectivity in recovery from postoperative supplementary motor area syndrome in glioma patients. J Neurosurg 2022; 139 (02) 1-10
  • 64 Darby RR, Joutsa J, Burke MJ, Fox MD. Lesion network localization of free will. Proc Natl Acad Sci U S A 2018; 115 (42) 10792-10797
  • 65 Maesawa S, Bagarinao E, Fujii M. et al. Evaluation of resting state networks in patients with gliomas: connectivity changes in the unaffected side and its relation to cognitive function. PLoS One 2015; 10 (02) e0118072
  • 66 Liu D, Hu X, Liu Y. et al. Potential intra-or cross-network functional reorganization of the triple unifying networks in patients with frontal glioma. World Neurosurg 2019; 128: e732-e743
  • 67 Zhang N, Xia M, Qiu T. et al. Reorganization of cerebro-cerebellar circuit in patients with left hemispheric gliomas involving language network: a combined structural and resting-state functional MRI study. Hum Brain Mapp 2018; 39 (12) 4802-4819
  • 68 Gupta L, Gupta RK, Postma AA. et al. Advanced and amplified BOLD fluctuations in high-grade gliomas. J Magn Reson Imaging 2018; 47 (06) 1616-1625
  • 69 Liu D, Chen J, Hu X. et al. Contralesional homotopic functional plasticity in patients with temporal glioma. J Neurosurg 2020; 134 (02) 1-9
  • 70 Sparacia G, Parla G, Lo Re V. et al. Resting-state functional connectome in patients with brain tumors before and after surgical resection. World Neurosurg 2020; 141: e182-e194
  • 71 Yang J, Gohel S, Zhang Z, Hatzoglou V, Holodny AI, Vachha BA. Glioma-induced disruption of resting-state functional connectivity and amplitude of low-frequency fluctuations in the salience network. AJNR Am J Neuroradiol 2021; 42 (03) 551-558
  • 72 Bergo E, Lombardi G, Guglieri I, Capovilla E, Pambuku A, Zagone V. Neurocognitive functions and health-related quality of life in glioblastoma patients: a concise review of the literature. Eur J Cancer Care (Engl) 2019; 28 (01) e12410
  • 73 Esposito R, Mattei PA, Briganti C, Romani GL, Tartaro A, Caulo M. Modifications of default-mode network connectivity in patients with cerebral glioma. PLoS One 2012; 7 (07) e40231
  • 74 Harris RJ, Bookheimer SY, Cloughesy TF. et al. Altered functional connectivity of the default mode network in diffuse gliomas measured with pseudo-resting state fMRI. J Neurooncol 2014; 116 (02) 373-379
  • 75 Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 2014; 20 (02) 150-159
  • 76 He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 2007; 53 (06) 905-918
  • 77 Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002; 3 (03) 201-215
  • 78 Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 2009; 101 (06) 3270-3283
  • 79 Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron 2008; 58 (03) 306-324
  • 80 Jerde TA, Merriam EP, Riggall AC, Hedges JH, Curtis CE. Prioritized maps of space in human frontoparietal cortex. J Neurosci 2012; 32 (48) 17382-17390
  • 81 Giesbrecht B, Woldorff MG, Song AW, Mangun GR. Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 2003; 19 (03) 496-512
  • 82 Morishima Y, Akaishi R, Yamada Y, Okuda J, Toma K, Sakai K. Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat Neurosci 2009; 12 (01) 85-91
  • 83 Slagter HA, Giesbrecht B, Kok A. et al. fMRI evidence for both generalized and specialized components of attentional control. Brain Res 2007; 1177: 90-102
  • 84 Corbetta M, Tansy AP, Stanley CM, Astafiev SV, Snyder AZ, Shulman GL. A functional MRI study of preparatory signals for spatial location and objects. Neuropsychologia 2005; 43 (14) 2041-2056
  • 85 Rajan A, Meyyappan S, Liu Y. et al. The microstructure of attentional control in the dorsal attention network. J Cogn Neurosci 2021; 33 (06) 965-983
  • 86 Tordjman M, Madelin G, Gupta PK. et al. Functional connectivity of the default mode, dorsal attention and fronto-parietal executive control networks in glial tumor patients. J Neurooncol 2021; 152 (02) 347-355
  • 87 Lv H, Wang Z, Tong E. et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol 2018; 39 (08) 1390-1399
  • 88 Metwali H, Raemaekers M, Kniese K, Samii A. Intraoperative resting-state functional connectivity and resting-state networks in patients with intracerebral lesions: detectability and variations between sessions. World Neurosurg 2020; 133: e197-e204
  • 89 Sparacia G, Parla G, Cannella R. et al. Resting-state functional magnetic resonance imaging for brain tumor surgical planning: feasibility in clinical setting. World Neurosurg 2019; 131: 356-363
  • 90 Zacà D, Jovicich J, Corsini F, Rozzanigo U, Chioffi F, Sarubbo S. ReStNeuMap: a tool for automatic extraction of resting-state functional MRI networks in neurosurgical practice. J Neurosurg 2018; 131 (03) 764-771
  • 91 Denes G, Semenza C, Stoppa E, Lis A. Unilateral spatial neglect and recovery from hemiplegia: a follow-up study. Brain 1982; 105 (Pt 3): 543-552
  • 92 Bartolomeo P. The novelty effect in recovered hemineglect. Cortex 1997; 33 (02) 323-332
  • 93 De Schotten MT, Dell'Acqua F, Forkel S. et al. A Lateralized Brain Network for Visuospatial Attention (P02. 026). AAN Enterprises; 2012
  • 94 Thiebaut de Schotten M, Urbanski M, Duffau H. et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 2005; 309 (5744) 2226-2228
  • 95 Briggs RG, Lin Y-H, Dadario NB. et al. Anatomy and white matter connections of the middle frontal gyrus. World Neurosurg 2021; 150: e520-e529
  • 96 Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 2005; 4 (08) 476-486
  • 97 Duffau H, Capelle L. [Functional recuperation following lesions of the primary somatosensory fields. Study of compensatory mechanisms]. Neurochirurgie 2001; 47 (06) 557-563
  • 98 Duffau H, Capelle L, Denvil D. et al. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry 2003; 74 (07) 901-907
  • 99 Herbet G, Lafargue G, Bonnetblanc F, Moritz-Gasser S, Duffau H. Is the right frontal cortex really crucial in the mentalizing network? A longitudinal study in patients with a slow-growing lesion. Cortex 2013; 49 (10) 2711-2727
  • 100 Sallard E, Barral J, Duffau H, Bonnetblanc F. Manual reaction times and brain dynamics after ‘awake surgery’ of slow-growing tumours invading the parietal area. A case report. Brain Inj 2012; 26 (13-14): 1750-1755
  • 101 Sallard E, Duffau H, Bonnetblanc F. Ultra-fast recovery from right neglect after ‘awake surgery’ for slow-growing tumor invading the left parietal area. Neurocase 2012; 18 (01) 80-90
  • 102 Charras P, Herbet G, Deverdun J. et al. Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex 2015; 63: 27-41
  • 103 Banwinkler M, Theis H, Prange S, van Eimeren T. Imaging the limbic system in Parkinson's disease—a review of limbic pathology and clinical symptoms. Brain Sci 2022; 12 (09) 1248
  • 104 Rolls ET. Limbic systems for emotion and for memory, but no single limbic system. Cortex 2015; 62: 119-157
  • 105 Edlow BL, McNab JA, Witzel T, Kinney HC. The structural connectome of the human central homeostatic network. Brain Connect 2016; 6 (03) 187-200
  • 106 Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry 2007; 49 (02) 132-139
  • 107 Rolls ET, Grabenhorst F. The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 2008; 86 (03) 216-244
  • 108 Crawford L. The Limbic System. Accessed November 01, 2022 at: https://www.o8t.com/blog/limbic-system . Published 2022
  • 109 Li Y, Yu Z, Wu P, Chen J. Ability of an altered functional coupling between resting-state networks to predict behavioral outcomes in subcortical ischemic stroke: a longitudinal study. Front Aging Neurosci 2022; 14: 933567
  • 110 Cauzzo S, Singh K, Stauder M. et al. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neuroimage 2022; 250: 118925
  • 111 Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct 2019; 224 (09) 3001-3018
  • 112 Vogt BA. Cingulate cortex in the three limbic subsystems. Handb Clin Neurol 2019; 166: 39-51
  • 113 Rolls ET. The cingulate cortex and limbic systems for action, emotion, and memory. Handb Clin Neurol 2019; 166: 23-37
  • 114 Mansouri A, Boutet A, Elias G. et al. Lesion network mapping analysis identifies potential cause of postoperative depression in a case of cingulate low-grade glioma. World Neurosurg 2020; 133: 278-282
  • 115 Ülgen E, Aras FK, Coşgun E. et al. Correlation of anatomical involvement patterns of insular gliomas with subnetworks of the limbic system. J Neurosurg 2021; 136 (02) 323-334
  • 116 Eseonu CI, ReFaey K, Garcia O. et al. Volumetric analysis of extent of resection, survival, and surgical outcomes for insular gliomas. World Neurosurg 2017; 103: 265-274
  • 117 Palejwala AH, Dadario NB, Young IM. et al. Anatomy and white matter connections of the lingual gyrus and cuneus. World Neurosurg 2021; 151: e426-e437
  • 118 Crawford L. The Visual System. Accessed November 01, 2022 at: https://www.o8t.com/blog/visual-system . Published 2022
  • 119 Taubert J, Ritchie JB, Ungerleider LG, Baker CI. One object, two networks? Assessing the relationship between the face and body-selective regions in the primate visual system. Brain Struct Funct 2022; 227 (04) 1423-1438
  • 120 Bilevicius E, Kolesar TA, Smith SD, Trapnell PD, Kornelsen J. Trait emotional empathy and resting state functional connectivity in default mode, salience, and central executive networks. Brain Sci 2018; 8 (07) 128
  • 121 Griesbauer EM, Manley E, Wiener JM, Spiers HJ. London taxi drivers: a review of neurocognitive studies and an exploration of how they build their cognitive map of London. Hippocampus 2022; 32 (01) 3-20
  • 122 Feng C, Gu R, Li T. et al. Separate neural networks of implicit emotional processing between pictures and words: a coordinate-based meta-analysis of brain imaging studies. Neurosci Biobehav Rev 2021; 131: 331-344
  • 123 Tamietto M, Pullens P, de Gelder B, Weiskrantz L, Goebel R. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr Biol 2012; 22 (15) 1449-1455
  • 124 Tao D, He Z, Lin Y, Liu C, Tao Q. Where does fear originate in the brain? A coordinate-based meta-analysis of explicit and implicit fear processing. Neuroimage 2021; 227: 117686
  • 125 Nebel MB, Eloyan A, Nettles CA. et al. Intrinsic visual-motor synchrony correlates with social deficits in autism. Biol Psychiatry 2016; 79 (08) 633-641
  • 126 Freud E, Plaut DC, Behrmann M. ‘What’ is happening in the dorsal visual pathway. Trends Cogn Sci 2016; 20 (10) 773-784
  • 127 Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 2008; 60 (04) 709-719
  • 128 Shen W, Tu Y, Gollub RL. et al. Visual network alterations in brain functional connectivity in chronic low back pain: a resting state functional connectivity and machine learning study. Neuroimage Clin 2019; 22: 101775
  • 129 Lombardo MV, Eyler L, Moore A. et al. Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties. eLife 2019; 8: 8
  • 130 Duffau H. The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 2014; 58: 325-337
  • 131 Ng S, Deverdun J, Lemaitre AL. et al. Precuneal gliomas promote behaviorally relevant remodeling of the functional connectome. J Neurosurg 2022; •••: 1-11
  • 132 Hagner M. The electrical excitability of the brain: toward the emergence of an experiment. J Hist Neurosci 2012; 21 (03) 237-249
  • 133 Taylor CS, Gross CG. Twitches versus movements: a story of motor cortex. Neuroscientist 2003; 9 (05) 332-342
  • 134 Craig BT, Kinney-Lang E, Hilderley AJ, Carlson HL, Kirton A. Structural connectivity of the sensorimotor network within the non-lesioned hemisphere of children with perinatal stroke. Sci Rep 2022; 12 (01) 3866
  • 135 Baker CM, Burks JD, Briggs RG. et al. A connectomic atlas of the human cerebrum - Chapter 1: introduction, methods, and significance. Oper Neurosurg (Hagerstown) 2018; 15 (Suppl. 01) S1-S9
  • 136 Zalesky A, Akhlaghi H, Corben LA. et al. Cerebello-cerebral connectivity deficits in Friedreich ataxia. Brain Struct Funct 2014; 219 (03) 969-981
  • 137 Baker CM, Burks JD, Briggs RG. et al. A connectomic atlas of the human cerebrum - chapter 3: the motor, premotor, and sensory cortices. Oper Neurosurg (Hagerstown) 2018; 15 (Suppl. 01) S75-S121
  • 138 Breakspear M, Stam CJ. Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci 2005; 360 (1457) 1051-1074
  • 139 Weinberger NM. Cortical plasticity in associative learning and memory. In: Byrne JH. ed. Learning and Memory: A Comprehensive Reference. Oxford: Academic Press; 2008: 187-218
  • 140 Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M, Gerloff C. Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 1999; 122 (Pt 5): 855-870
  • 141 Blumberg MS. Developing sensorimotor systems in our sleep. Curr Dir Psychol Sci 2015; 24 (01) 32-37
  • 142 Toga AW, Clark KA, Thompson PM, Shattuck DW, Van Horn JD. Mapping the human connectome. Neurosurgery 2012; 71 (01) 1-5
  • 143 Flinker A, Korzeniewska A, Shestyuk AY. et al. Redefining the role of Broca's area in speech. Proc Natl Acad Sci U S A 2015; 112 (09) 2871-2875
  • 144 Yeo BT, Krienen FM, Sepulcre J. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106 (03) 1125-1165
  • 145 Margulies DS, Uddin LQ. Network convergence zones in the anterior midcingulate cortex. Handb Clin Neurol 2019; 166: 103-111
  • 146 Chang EF, Niziolek CA, Knight RT, Nagarajan SS, Houde JF. Human cortical sensorimotor network underlying feedback control of vocal pitch. Proc Natl Acad Sci U S A 2013; 110 (07) 2653-2658
  • 147 Comstock DC, Hove MJ, Balasubramaniam R. Sensorimotor synchronization with auditory and visual modalities: behavioral and neural differences. Front Comput Neurosci 2018; 12: 53
  • 148 de Araujo IE, Simon SA. The gustatory cortex and multisensory integration. Int J Obes 2009; 33 Suppl 2 (Suppl. 02) S34-S43
  • 149 Olivo G, Wiemerslage L, Nilsson EK. et al. Resting-state brain and the FTO obesity risk allele: default mode, sensorimotor, and salience network connectivity underlying different somatosensory integration and reward processing between genotypes. Front Hum Neurosci 2016; 10: 52
  • 150 Stevens MC, Kiehl KA, Pearlson GD, Calhoun VD. Functional neural networks underlying response inhibition in adolescents and adults. Behav Brain Res 2007; 181 (01) 12-22
  • 151 Pi YL, Wu XH, Wang FJ. et al. Motor skill learning induces brain network plasticity: a diffusion-tensor imaging study. PLoS One 2019; 14 (02) e0210015
  • 152 Doucet GE, Bassett DS, Yao N, Glahn DC, Frangou S. The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am J Psychiatry 2017; 174 (12) 1214-1222
  • 153 Bologna M, Paparella G. Neurodegeneration and sensorimotor function. Brain Sci 2020; 10 (11) 808
  • 154 Duffau H. Mapping the connectome in awake surgery for gliomas: an update. J Neurosurg Sci 2017; 61 (06) 612-630
  • 155 Duffau H. Brain connectomics applied to oncological neuroscience: from a traditional surgical strategy focusing on glioma topography to a meta-network approach. Acta Neurochir (Wien) 2021; 163 (04) 905-917
  • 156 Freyschlag CF, Duffau H. Awake brain mapping of cortex and subcortical pathways in brain tumor surgery. J Neurosurg Sci 2014; 58 (04) 199-213
  • 157 Schneider FC, Pailler M, Faillenot I. et al. Presurgical assessment of the sensorimotor cortex using resting-state fMRI. AJNR Am J Neuroradiol 2016; 37 (01) 101-107
  • 158 DeWitt I, Rauschecker JP. Wernicke's area revisited: parallel streams and word processing. Brain Lang 2013; 127 (02) 181-191
  • 159 Keller SS, Crow T, Foundas A, Amunts K, Roberts N. Broca's area: nomenclature, anatomy, typology and asymmetry. Brain Lang 2009; 109 (01) 29-48
  • 160 Fedorenko E, Thompson-Schill SL. Reworking the language network. Trends Cogn Sci 2014; 18 (03) 120-126
  • 161 Monroy-Sosa A, Chakravarthi SS, Cortes-Contreras AP. et al. The evolution of cerebral language localization: historical analysis and current trends. World Neurosurg 2021; 145: 89-97
  • 162 Briggs RG, Conner AK, Baker CM. et al. A connectomic atlas of the human cerebrum - Chapter 18: the connectional anatomy of human brain networks. Oper Neurosurg (Hagerstown) 2018; 15 (Suppl. 01) S470-S480
  • 163 Parker GJ, Luzzi S, Alexander DC, Wheeler-Kingshott CA, Ciccarelli O, Lambon Ralph MA. Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 2005; 24 (03) 656-666
  • 164 Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 2005; 128 (Pt 4): 797-810
  • 165 Linell P. The concept of phonological form and the activities of speech production and speech perception. J Phonetics 1982; 10 (01) 37-72
  • 166 Catani M, Allin MP, Husain M. et al. Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci U S A 2007; 104 (43) 17163-17168
  • 167 Glasser MF, Coalson TS, Robinson EC. et al. A multi-modal parcellation of human cerebral cortex. Nature 2016; 536 (7615) 171-178
  • 168 Ferstl EC, Neumann J, Bogler C, von Cramon DY. The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Hum Brain Mapp 2008; 29 (05) 581-593
  • 169 Papathanassiou D, Etard O, Mellet E, Zago L, Mazoyer B, Tzourio-Mazoyer N. A common language network for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage 2000; 11 (04) 347-357
  • 170 Baker CM, Burks JD, Briggs RG. et al. A connectomic atlas of the human cerebrum - chapter 6: the temporal lobe. Oper Neurosurg (Hagerstown) 2018; 15 (Suppl. 01) S245-S294
  • 171 Bajada CJ, Lambon Ralph MA, Cloutman LL. Transport for language south of the Sylvian fissure: the routes and history of the main tracts and stations in the ventral language network. Cortex 2015; 69: 141-151
  • 172 Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci 2007; 30: 123-152
  • 173 Yuan B, Zhang N, Yan J, Cheng J, Lu J, Wu J. Resting-state functional connectivity predicts individual language impairment of patients with left hemispheric gliomas involving language network. Neuroimage Clin 2019; 24: 102023
  • 174 van Dokkum LEH, Moritz Gasser S, Deverdun J. et al. Resting state network plasticity related to picture naming in low-grade glioma patients before and after resection. Neuroimage Clin 2019; 24: 102010
  • 175 Bates E, Reilly J, Wulfeck B. et al. Differential effects of unilateral lesions on language production in children and adults. Brain Lang 2001; 79 (02) 223-265
  • 176 Glenn C, Conner AK, Rahimi M, Briggs RG, Baker C, Sughrue M. Common disconnections in glioma surgery: an anatomic description. Cureus 2017; 9 (10) e1778