Semin Plast Surg 2023; 37(03): 184-187
DOI: 10.1055/s-0043-1771303
Review Article

Updates in Robotic Head and Neck Reconstructive Surgery

Michael Hajek
1   Department of Otolaryngology Head and Neck Surgery, University Health Network – Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
,
Christopher M.K.L. Yao
1   Department of Otolaryngology Head and Neck Surgery, University Health Network – Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
› Author Affiliations

Funding None.

Abstract

The use of robotics in head and neck surgery has drastically increased over the past two decades. Transoral robotic surgery has revolutionized the surgical approach to the upper aerodigestive tract including the oropharynx and supraglottic larynx. The expanded use and improving technology of robotics have allowed for new approaches in both the ablative and reconstructive aspects of head and neck surgery. Here, we discuss the recent updates in robotics in head and neck surgery and future directions the field may turn.



Publication History

Article published online:
28 August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 O'Malley Jr BW, Weinstein GS, Snyder W, Hockstein NG. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2006; 116 (08) 1465-1472
  • 2 Hedayat F, Jerry Htwe KK, Vassiliou LV, Kyzas P. Morbidity related to the lip-split mandibulotomy approach: a systematic and narrative review. Br J Oral Maxillofac Surg 2022; 60 (04) 430-436
  • 3 Liu C, Mann D, Sinha UK, Kokot NC. The molecular mechanisms of increased radiosensitivity of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC): an extensive review. J Otolaryngol Head Neck Surg 2018; 47 (01) 59
  • 4 Caudell JJ, Gillison ML, Maghami E. et al. NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022. J Natl Compr Canc Netw 2022; 20 (03) 224-234
  • 5 Chen AY, Schrag N, Hao Y, Stewart A, Ward E. Changes in treatment of advanced oropharyngeal cancer, 1985-2001. Laryngoscope 2007; 117 (01) 16-21
  • 6 Yeh DH, Tam S, Fung K. et al. Transoral robotic surgery vs. radiotherapy for management of oropharyngeal squamous cell carcinoma: a systematic review of the literature. Eur J Surg Oncol 2015; 41 (12) 1603-1614
  • 7 Yao CMKL, Hutcheson KA. Quality of life implications after transoral robotic surgery for oropharyngeal cancers. Otolaryngol Clin North Am 2020; 53 (06) 1117-1129
  • 8 Park YM, Kim WS, De Virgilio A, Lee SY, Seol JH, Kim SH. Transoral robotic surgery for hypopharyngeal squamous cell carcinoma: 3-year oncologic and functional analysis. Oral Oncol 2012; 48 (06) 560-566
  • 9 Weinstein GS, O'Malley Jr BW, Snyder W, Hockstein NG. Transoral robotic surgery: supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol 2007; 116 (01) 19-23
  • 10 Lee HS, Kim WS, Hong HJ. et al. Robot-assisted supraomohyoid neck dissection via a modified face-lift or retroauricular approach in early-stage cN0 squamous cell carcinoma of the oral cavity: a comparative study with conventional technique. Ann Surg Oncol 2012; 19 (12) 3871-3878
  • 11 Hoff PT, D'Agostino MA, Thaler ER. Transoral robotic surgery in benign diseases including obstructive sleep apnea: safety and feasibility. Laryngoscope 2015; 125 (05) 1249-1253
  • 12 White H, Ford S, Bush B. et al. Salvage surgery for recurrent cancers of the oropharynx: comparing TORS with standard open surgical approaches. JAMA Otolaryngol Head Neck Surg 2013; 139 (08) 773-778
  • 13 Paleri V, Fox H, Coward S. et al. Transoral robotic surgery for residual and recurrent oropharyngeal cancers: exploratory study of surgical innovation using the IDEAL framework for early-phase surgical studies. Head Neck 2018; 40 (03) 512-525
  • 14 de Almeida JR, Park RC, Villanueva NL, Miles BA, Teng MS, Genden EM. Reconstructive algorithm and classification system for transoral oropharyngeal defects. Head Neck 2014; 36 (07) 934-941
  • 15 Barrette LX, De Ravin E, Carey RM, Mady LJ, Cannady SB, Brody RM. Reconstruction following transoral robotic surgery for head and neck cancer: systematic review. Head Neck 2022; 44 (05) 1246-1254
  • 16 Selber JC. Transoral robotic reconstruction of oropharyngeal defects: a case series. Plast Reconstr Surg 2010; 126 (06) 1978-1987
  • 17 Hans S, Jouffroy T, Veivers D. et al. Transoral robotic-assisted free flap reconstruction after radiation therapy in hypopharyngeal carcinoma: report of two cases. Eur Arch Otorhinolaryngol 2013; 270 (08) 2359-2364
  • 18 Chan JYW, Chan RCL, Chow VLY, Tsang RKY, Wong STS, Wei WI. Transoral robotic total laryngopharyngectomy and free jejunal flap reconstruction for hypopharyngeal cancer. Oral Oncol 2017; 72: 194-196
  • 19 Holsinger FC, Magnuson JS, Weinstein GS. et al. A next-generation single-port robotic surgical system for transoral robotic surgery: results from prospective nonrandomized clinical trials. JAMA Otolaryngol Head Neck Surg 2019; 145 (11) 1027-1034
  • 20 Wu GCY, Podolsky DJ, Looi T, Kahrs LA, Drake JM, Forrest CR. A 3 mm wristed instrument for the da Vinci Robot: setup, characterization, and phantom tests for cleft palate repair. IEEE Trans Med Robot Bionics 2020; 2 (02) 130-139
  • 21 Mascagni P, Alapatt D, Sestini L. et al. Computer vision in surgery: from potential to clinical value. NPJ Digit Med 2022; 5 (01) 163
  • 22 Chalmers R, Schlabe J, Yeung E, Kerawala C, Cascarini L, Paleri V. Robot-assisted reconstruction in head and neck surgical oncology: the evolving role of the reconstructive microsurgeon. ORL J Otorhinolaryngol Relat Spec 2018; 80 (3–4): 178-185