Subscribe to RSS
DOI: 10.1055/s-0043-1775499
Hydrophilic α-Aryl-α-Diazoamides for Protein Esterification
Authors
A.O. was supported by postdoctoral fellowship F32 CA247259 (National Institutes of Health, NIH). A.M. was supported by the Undergraduate Research Opportunities Program at the Massachusetts Institute of Technology. Y.D.P. was supported by a National Science Foundation (NSF) Graduate Research Fellowship. This work was supported by grants R35 GM148220, R35 GM149532, and P30 CA014051 (NIH).

Abstract
Bioreversible protein esterification is a simple, customizable, and traceless strategy for the exogenous delivery of proteins into mammalian cells. Enabling this protein delivery strategy are α-aryl-α-diazoamides bearing a tolyl moiety. The aqueous solubility of the ensuing esterified protein is, however, often compromised, which can result in the loss of soluble esterified protein for downstream applications. Here, we undertook a structure–activity relationship campaign to generate hydrophilic diazoamides for use as protein esterification and cellular delivery agents. We find that the careful adjustment of the hydrogen-bond basicity of α-aryl-α-diazoamides is sufficient to engender soluble esterified proteins, as high hydrogen-bond basicity correlates with high aqueous solubility. Importantly, enhancing aqueous solubility of diazoamides should proceed pari passu with preserving their lipophilicity and reactivity towards esterification of carboxylic acids, as the best-performing diazoamide from our study contains an N-acetyl piperazine while retaining the tolyl moiety. Our efforts can inspire new generations of esterified proteins with better solubility.
Key words
cell - delivery - diazo compounds - esterification - hydrophilicity - hydrophobicity - proteins - solubilitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775499.
- Supporting Information (PDF)
Publication History
Received: 02 March 2025
Accepted after revision: 17 June 2025
Article published online:
15 July 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a
Nagel YA,
Raschle PS,
Wennemers H.
Angew. Chem. Int. Ed. 2016; 56: 122
Reference Ris Wihthout Link
- 1b
Bolhassani A,
Jafarzade BS,
Mardani G.
Peptides 2017; 87: 50
Reference Ris Wihthout Link
- 1c
Sánchez-Navarro M.
Adv. Drug. Delivery Rev. 2021; 171: 187
Reference Ris Wihthout Link
- 1d
Saha A,
Mandal S,
Arafiles JV. V,
Gómez-Gonzálex J,
Hackenberger CP. R,
Brik A.
Angew. Chem. Int. Ed. 2022; 61: e202207551
Reference Ris Wihthout Link
- 2a
Li W,
Nicol F,
Szoka FC. Jr.
Adv. Drug Delivery Rev. 2004; 56: 967
Reference Ris Wihthout Link
- 2b
Reshetnyak YK,
Andreev OA,
Lehnert U,
Engelman DM.
Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 6460
Reference Ris Wihthout Link
- 2c
Thévenin D,
An M,
Engelman DM.
Chem. Biol. 2009; 16: 754
Reference Ris Wihthout Link
- 2d
Cheng CJ,
Bahal R,
Babar IA,
Pincus Z,
Barrera F,
Liu C,
Svoronos A,
Braddock DT,
Glazer PM,
Engelman DM,
Saltzman WM,
Slack FJ.
Nature 2015; 518: 107
Reference Ris Wihthout Link
- 3a
Rüssmann H,
Shams H,
Poblete F,
Fu Y,
Galán JE,
Donis RO.
Science 1998; 281: 565
Reference Ris Wihthout Link
- 3b
Nishikawa H,
Sato E,
Briones G,
Chen LM,
Matsuo M,
Nagata Y,
Ritter G,
Jäger E,
Nomura H,
Kondo S,
Tawara I,
Kato T,
Shiku H,
Old LJ,
Galán JE,
Gnjatic S.
J. Clin. Invest. 2006; 116: 1946
Reference Ris Wihthout Link
- 3c
Appelbaum JS,
LaRochelle JR,
Smith BA,
Balkin DM,
Holub JM,
Schepartz A.
Chem. Biol. 2012; 19: 819
Reference Ris Wihthout Link
- 3d
Bachran C,
Morley T,
Abdelazim S,
Fattah RJ,
Liu S,
Leppla SH.
mBio 2013; 4: e00201
Reference Ris Wihthout Link
- 3e
Schmit NE,
Neopane K,
Hantschel O.
ACS Chem. Biol. 2019; 14: 916
Reference Ris Wihthout Link
- 4
Mitchell MJ,
Billingsley MM,
Haley RM,
Wechsler ME,
Peppas NA,
Langer R.
Nat. Rev. Drug Discovery 2021; 20: 101
Reference Ris Wihthout Link
- 5
Mecke A,
Lee DK,
Ramamoorthy A,
Orr BG,
Holl MM.
Langmuir 2005; 21: 8588
Reference Ris Wihthout Link
- 6a
Gasparini G,
Bang EK,
Molinard G,
Tulumello DV,
Ward S,
Kelley SO,
Roux A,
Sakai N,
Matile S.
J. Am. Chem. Soc. 2014; 136: 6069
Reference Ris Wihthout Link
- 6b
Gasparini G,
Sargsyan G,
Bang EK,
Sakai N,
Matile S.
Angew. Chem. Int. Ed. 2015; 54: 7328
Reference Ris Wihthout Link
- 6c
Du S,
Liew SS,
Zhang CW,
Du W,
Lang W,
Yao CC. Y,
Li L,
Ge J,
Yao SQ.
ACS Cent. Sci. 2020; 6: 2362
Reference Ris Wihthout Link
- 6d
Guo J,
Wan T,
Li B,
Pan Q,
Xin H,
Qiu Y,
Ping Y.
ACS Cent. Sci. 2021; 7: 990
Reference Ris Wihthout Link
- 7
Sercombe L,
Veerati T,
Moheimani F,
Wu SY,
Sood AK,
Hua S.
Front. Pharmacol. 2015; 6: 286
Reference Ris Wihthout Link
- 8
Sun Y,
Lau SY,
Lim ZW,
Chang SC,
Ghadessy F,
Partridge A,
Miserez A.
Nat. Chem. 2022; 14: 274
Reference Ris Wihthout Link
- 9a
Akishiba M,
Takeuchi T,
Kawaguchi Y,
Sakamoto K,
Yu HH,
Nakase I,
Takatani-Nakase T,
Madani F,
Gräslund A,
Futaki S.
Nat. Chem. 2017; 9: 751
Reference Ris Wihthout Link
- 9b
Shinga K,
Iwata T,
Murata K,
Daitoku Y,
Michibata J,
Arafiles JV. V,
Sakamoto K,
Akishiba M,
Takatani-Nakase T,
Mizuno S,
Sugiyama F,
Imanishi M,
Futaki S.
Bioorg. Med. Chem. 2022; 61: 116728
Reference Ris Wihthout Link
- 9c
Giancola JB,
Grimm JB,
Jun JV,
Petri YD,
Lavis LD,
Raines RT.
ACS Chem. Biol. 2024; 19: 908
Reference Ris Wihthout Link
- 10a
Mix KA,
Raines RT.
Org. Lett. 2015; 17: 2358
Reference Ris Wihthout Link
- 10b
Mix KA,
Aronoff MR,
Raines RT.
ACS Chem. Biol. 2016; 11: 3233
Reference Ris Wihthout Link
- 10c
Mix KA,
Lomax JE,
Raines RT.
J. Am. Chem. Soc. 2017; 139: 14396
Reference Ris Wihthout Link
- 11
Ressler VT,
Mix KA,
Raines RT.
ACS Chem. Biol. 2019; 14: 599
Reference Ris Wihthout Link
- 12
Jun JV,
Petri YD,
Erickson LW,
Raines RT.
J. Am. Chem. Soc. 2023; 145: 6615
Reference Ris Wihthout Link
- 13
Petri YD,
Gutierrez CS,
Raines RT.
Angew. Chem. Int. Ed. 2023; 62: e202215614
Reference Ris Wihthout Link
- 14a
Cheah KM,
Jun JV,
Wittrup KD,
Raines RT.
Mol. Pharm. 2022; 19: 3869
Reference Ris Wihthout Link
- 14b
Maynard JR. J,
Saidjalolov S,
Velluz M.-C,
Vossio S,
Aumeier C,
Moreau D,
Sakai N,
Matile S.
ChemistryEurope 2023; 1: e202300029
Reference Ris Wihthout Link
- 15a
Tanford C.
In
Physical Chemistry of Macromolecules
. John Wiley & Sons; New York: 1961: 240
Reference Ris Wihthout Link
- 15b
Arakawa T,
Timasheff SN.
Methods Enzymol. 1985; 114: 49
Reference Ris Wihthout Link
- 15c
Shaw KL,
Grimsley GR,
Yakovlev GI,
Makarov AA,
Pace CN.
Protein Sci. 2001; 10: 1206
Reference Ris Wihthout Link
- 15d
Tokmakov AA,
Kurotani A,
Sato KI.
Front. Mol. Biosci. 2021; 8: 775736
Reference Ris Wihthout Link
- 16a
Zidovetzki R,
Levitan I.
Biochim. Biophys. Acta 2007; 1768: 1311
Reference Ris Wihthout Link
- 16b
Kovacs T,
Nagy P,
Panyi G,
Szente L,
Varga Z,
Zakany F.
Pharmaceutics 2022; 14: 2559
Reference Ris Wihthout Link
- 17
Leo A,
Hansch C,
Elkins D.
Chem. Rev. 1971; 6: 525
Reference Ris Wihthout Link
- 18
Laurence C,
Brameld KA,
Graton J,
Le Questel JY,
Renault E.
J. Med. Chem. 2009; 52: 4073
Reference Ris Wihthout Link
- 19 Molinspiration Cheminformatics (Slovensky Grob, Slovakia) free web services (accessed
July 7, 2025): https://www.molinspiration.com
Reference Ris Wihthout Link
- 20 All cLogP values reported herein represent the cLogP of the product of an esterification reaction between an α-aryl-α-diazoamide and acetic
acid. Such simplified ester products should approximate the cLogP of the pendant esters on an esterified protein.
Reference Ris Wihthout Link
- 21a
Myers EL,
Raines RT.
Angew. Chem. Int. Ed. 2009; 48: 2359
Reference Ris Wihthout Link
- 21b
Chou H.-H,
Raines RT.
J. Am. Chem. Soc. 2013; 135: 14936
Reference Ris Wihthout Link
- 22 The conditions for GFP esterification and subsequent buffer exchange differed from
those in ref. 10c.
Reference Ris Wihthout Link
- 23
Jun JV,
Raines RT.
Org. Lett. 2021; 23: 3110
Reference Ris Wihthout Link
- 24a
Roberts JD,
Watanabe W,
McMahon RE.
J. Am. Chem. Soc. 1951; 73: 760
Reference Ris Wihthout Link
- 24b
McGrath NA,
Raines RT.
Chem. Sci. 2012; 3: 3237
Reference Ris Wihthout Link
- 25
Pédelacq JD,
Cabantous S,
Tran T,
Terwilliger TC,
Waldo GS.
Nat. Biotechnol. 2006; 24: 79
Reference Ris Wihthout Link
- 26 This approximation represents a lower limit of the number of tolyl ester tags installed
on the protein because the two esters have different contributions to the final observed
mass of the esterified protein product and because of uncertainty in the number of
pyridyl tags left on the protein at the end of the reaction workflow.
Reference Ris Wihthout Link
- 27a
Ni H,
Hatit MZ. C,
Zhao K,
Loughrey D,
Lokugamage MP,
Peck HE,
Cid AD,
Muralidharan A,
Kim Y,
Santangelo PJ,
Dahlman JE.
Nat. Commun. 2022; 13: 4766
Reference Ris Wihthout Link
- 27b
Kim M,
Jeong M,
Lee G,
Lee Y,
Park J,
Jung H,
Im S,
Yang JS,
Kim K,
Lee H.
Bioeng. Transl. Med. 2023; 8: e10556
Reference Ris Wihthout Link
- 28
Das B,
Baidya AT. K,
Mathew AT,
Yadav AK,
Kumar R.
Bioorg. Med. Chem. 2022; 56: 116614
Reference Ris Wihthout Link
- 29a
Hausig F,
Sobotta FH,
Richter F,
Harz DO,
Traeger A,
Brendel JC.
ACS Appl. Mater. Interfaces 2021; 13: 35233
Reference Ris Wihthout Link
- 29b
Zhang D,
Atochina-Vasserman EN,
Maurya DS,
Liu M,
Xiao Q,
Lu J,
Lauri G,
Ona N,
Reagan EK,
Ni H,
Weissman D,
Percec V.
J. Am. Chem. Soc. 2021; 143: 17975
Reference Ris Wihthout Link
- 30
Tomoda H,
Kishimoto Y,
Lee YC.
J. Biol. Chem. 1989; 264: 15445
Reference Ris Wihthout Link
- 31
Zheng N,
Shabek N.
Annu. Rev. Biochem. 2017; 86: 129
Reference Ris Wihthout Link
- 32
Wilkinson KD,
Audhya TK.
J. Biol. Chem. 1981; 256: 9235
Reference Ris Wihthout Link
- 33
Vijay-Kumar S,
Bugg CE,
Cook WJ.
J. Mol. Biol. 1987; 194: 531
Reference Ris Wihthout Link