OP-Journal 2018; 34(01): 18-24
DOI: 10.1055/s-0044-100006
Fachwissen
Georg Thieme Verlag KG Stuttgart · New York

Intraoperative Bildgebung in der Beckenchirurgie

Intraoperative Imaging in Pelvic Surgery
Peter Hinnerk Richter
,
Alexander Eickhoff
,
Florian Gebhard
,
Konrad Schütze
Further Information

Publication History

Publication Date:
26 April 2018 (online)

Zusammenfassung

Der rasante technische Fortschritt der letzten Jahre führte auch zu einer Weiterentwicklung moderner intraoperativer Bildgebungssysteme. Diese werden entweder als fixierte oder mobile Systeme angeboten und führen zu einer deutlichen Verbesserung der Bildqualität und Vergrößerung des Bilddurchmessers. Hier steht vor allem die Flachdetektor-Technologie im Vordergrund. Viele dieser Systeme bieten die Möglichkeit der intraoperativen 3-D-Darstellung. Fehllagen oder ungenügende Repositionen können dadurch in der gleichen Operation korrigiert werden, um Folgeoperationen zu vermeiden. Im Bereich des Beckens führt die Nutzung moderner Bildgebungssysteme in Kombination mit Navigationssystemen zu einer verbesserten Präzision der Implantatlage.

Abstract

Most surgical procedures are highly dependent on optimal intraoperative visualisation. New implants and the trend to minimally invasive surgery have encouraged the rapid development of intraoperative imaging. The invention of flat panel detectors has led to a revolution in medical imaging. Fixed and mobile systems are available. The major benefits of this technology are high image quality in combination with dose reduction and an increased field of view. With the cone beam CT scanner, there is immediate control of fracture reduction and implant positioning, with high image quality. This can reduce the need for secondary revision surgery due to implant malposition. In recent years, there has been a revival of CT-technology in operating theatres. Combination with an intraoperative navigation system increases implantation accuracy.

 
  • Literatur

  • 1 Zwingmann J, Hauschild O, Bode G. et al. Malposition and revision rates of different imaging modalities for percutaneous iliosacral screw fixation following pelvic fractures: a systematic review and meta-analysis. Arch Orthop Trauma Surg 2013; 133: 1257-1265
  • 2 Richter PH, Grafenberg A, Bodky M. et al. Leistungsfähigkeit der Flat-Panel-Technology in 2-D/3-D. OP-JOURNAL 2014; 30: 169-177
  • 3 Cowen AR, Kengyelics SM, Davies AG. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin Radiol 2008; 63: 487-498
  • 4 Seibert JA. Flat-panel detectors: how much better are they?. Pediatr Radiol 2006; 36 (Suppl. 02) S173-S181
  • 5 Krettek C, Gebhard F. [Development of intraoperative C-arm imaging in trauma surgery]. Unfallchirurg 2012; 115: 100-106
  • 6 Routt jr. ML, Simonian PT, Mills WJ. Iliosacral screw fixation: early complications of the percutaneous technique. J Orthop Trauma 1997; 11: 584-589
  • 7 Raj S, Irani FG, Tay KH. et al. C-arm cone beam computed tomography: a new tool in the interventional suite. Ann Acad Med Singapore 2013; 42: 585-592
  • 8 Shaw JC, Routt jr. MLC, Gary JL. Intra-operative multi-dimensional fluoroscopy of guidepin placement prior to iliosacral screw fixation for posterior pelvic ring injuries and sacroiliac dislocation: an early case series. Int Orthop 2017; 41: 2171-2177
  • 9 Verma SK, Singh PK, Agrawal D. et al. O-arm with navigation versus C-arm: a review of screw placement over 3 years at a major trauma center. Br J Neurosurg 2016; 30: 658-661
  • 10 Sullivan JP, Warme BA, Wolf BR. Use of an O-arm intraoperative computed tomography scanner for closed reduction of posterior sternoclavicular dislocations. J Shoulder Elbow Surg 2012; 21: e17-e20
  • 11 Hsu AR, Gross CE, Lee S. Intraoperative O-arm computed tomography evaluation of syndesmotic reduction: case report. Foot Ankle Int 2013; 34: 75375-9
  • 12 Richter PH, Yarboro S, Kraus M. et al. One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room. Injury 2015; 46 (Suppl. 04) S129-S134
  • 13 Richter PH, Gebhard F, Dehner C. et al. Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury 2016; 47: 402-407
  • 14 Pieske O, Landersdorfer C, Trumm C. et al. CT-guided sacroiliac percutaneous screw placement in unstable posterior pelvic ring injuries: accuracy of screw position, injury reduction and complications in 71 patients with 136 screws. Injury 2015; 46: 333-339
  • 15 Peng KT, Li YY, Hsu WH. et al. Intraoperative computed tomography with integrated navigation in percutaneous iliosacral screwing. Injury 2013; 44: 203-208
  • 16 Barsa P, Frohlich R, Sercl M. et al. The intraoperative portable CT scanner-based spinal navigation: a viable option for instrumentation in the region of cervico-thoracic junction. Eur Spine J 2016; 25: 1643-1650
  • 17 Hecht N, Kamphuis M, Czabanka M. et al. Accuracy and workflow of navigated spinal instrumentation with the mobile AIRO((R)) CT scanner. Eur Spine J 2016; 25: 716-723
  • 18 Czabanka M, Haemmerli J, Hecht N. et al. Spinal navigation for posterior instrumentation of C1–2 instability using a mobile intraoperative CT scanner. J Neurosurg Spine 2017; 27: 268-275
  • 19 Tonetti J, Carrat L, Blendea S. et al. Clinical results of percutaneous pelvic surgery. Computer assisted surgery using ultrasound compared to standard fluoroscopy. Comput Aided Surg 2001; 6: 204-211
  • 20 Hinsche AF, Giannoudis PV, Smith RM. Fluoroscopy-based multiplanar image guidance for insertion of sacroiliac screws. Clin Orthop Relat Res 2002; (395) 135-144
  • 21 Zwingmann J, Konrad G, Mehlhorn AT. et al. Percutaneous iliosacral screw insertion: malpositioning and revision rate of screws with regards to application technique (navigated vs. Conventional). J Trauma 2010; 69: 1501-1506
  • 22 Ochs BG, Gonser C, Shiozawa T. et al. Computer-assisted periacetabular screw placement: comparison of different fluoroscopy-based navigation procedures with conventional technique. Injury 2010; 41 (12) 1297-1305
  • 23 Kraus MD, Krischak G, Keppler P. et al. Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion?. Clin Orthop Relat Res 2010; 468: 2419-2429